<p><span style="font-size: medium;"><b>Genomics</b> is a discipline in [[omics]] concerning the study of the genomes and associated omes of organisms.</span></p><p><span style="font-size: medium;">The field includes intensive efforts to determine the entire </span><a class="mw-redirect" title="DNA sequence" href="http://en.wikipedia.org/wiki/DNA_sequence"><span style="font-size: medium;">DNA sequence</span></a><span style="font-size: medium;"> of organisms and fine-scale </span><a class="mw-redirect" title="Genetic mapping" href="http://en.wikipedia.org/wiki/Genetic_mapping"><span style="font-size: medium;">genetic mapping</span></a><span style="font-size: medium;"> efforts. </span></p><p><span style="font-size: medium;">The field also includes studies of intragenomic phenomena such as heterosis, epistasis, </span><a title="Pleiotropy" href="http://en.wikipedia.org/wiki/Pleiotropy"><span style="font-size: medium;">pleiotropy</span></a><span style="font-size: medium;"> and other interactions between loci and alleles within the genome. In contrast, the investigation of the roles and functions of single genes is a primary focus of </span><a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology"><span style="font-size: medium;">molecular biology</span></a><span style="font-size: medium;"> or </span><a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics"><span style="font-size: medium;">genetics</span></a><span style="font-size: medium;"> and is a common topic of modern medical and biological research. </span></p><p><span style="font-size: medium;"> Research of single genes does not fall into the definition of genomics unless the aim of this genetic, pathway, and functional information analysis is to elucidate its effect on, place in, and response to the entire genome's networks.</span></p><p><span style="font-size: medium;">For the </span><a title="United States Environmental Protection Agency" href="http://en.wikipedia.org/wiki/United_States_Environmental_Protection_Agency"><span style="font-size: medium;">United States Environmental Protection Agency</span></a><span style="font-size: medium;">, "the term "genomics" encompasses a broader scope of scientific inquiry associated technologies than when genomics was initially considered. A genome is the sum total of all an individual organism's genes. Thus, genomics is the study of all the genes of a cell, or tissue, at the DNA (genotype), mRNA (transcriptome), or protein (proteome) levels."</span><sup class="reference" id="cite_ref-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-0"><spanstyle="font-size: medium;">[</span>1<span>]</span></a></sup></p>
<p><font class="Apple-style-span" size="3"><br />
</font></p>
<h2><span id="History" class="mw-headline">History</span></h2>
<p><span style="font-size: medium;">The first genomes to be sequenced were those of a </span><a title="Virus" href="http://en.wikipedia.org/wiki/Virus"><span style="font-size: medium;">virus</span></a> and a <a titlespan style="Mitochondrionfont-size: medium;" href=> and a </span><a title="Mitochondrion" href="http://en.wikipedia.org/wiki/Mitochondrion"><span style="font-size: medium;">mitochondrion</span></a><span style="font-size: medium;">, and were done by </span><a class="mw-redirect" title="Fred Sanger" href="http://en.wikipedia.org/wiki/Fred_Sanger"><span style="font-size: medium;">Fred Sanger</span></a><span style="font-size: medium;">. His group established techniques of sequencing, genome mapping, data storage, and bioinformatic analyses in the 1970-1980s. A major branch of genomics is still concerned with </span><a title="Sequencing" href="http://en.wikipedia.org/wiki/Sequencing"><span style="font-size: medium;">sequencing</span></a><span style="font-size: medium;"> the genomes of various organisms, but the knowledge of full genomes has created the possibility for the field of </span><a title="Functional genomics" href="http://en.wikipedia.org/wiki/Functional_genomics"><span style="font-size: medium;">functional genomics</span></a>, mainly concerned with patterns of <a titlespan style="font-size: medium;">, mainly concerned with patterns of </span><a title="Gene expression" href="http://en.wikipedia.org/wiki/Gene_expression"><span style="font-size: medium;">gene expression</span></a> during various <span style="font-size: medium;"> during various conditions. The most important tools here are </span><a title="Microarray" href="http://en.wikipedia.org/wiki/Microarray"><span style="font-size: medium;">microarrays</span></a> and <a titlespan style="Bioinformatics" href=font-size: medium;"> and </span><a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics"><span style="font-size: medium;">bioinformatics</span></a><span style="font-size: medium;">. Study of the full set of proteins in a cell type or tissue, and the changes during various conditions, is called </span><a title="Proteomics" href="http://en.wikipedia.org/wiki/Proteomics"><span style="font-size: medium;">proteomics</span></a><span style="font-size: medium;">. A related concept is </span><a title="Materiomics" href="http://en.wikipedia.org/wiki/Materiomics"><span style="font-size: medium;">materiomics</span></a><span style="font-size: medium;">, which is defined as the study of the material properties of biological materials (e.g. hierarchical protein structures and materials, mineralized biological tissues, etc.) and their effect on the macroscopic function and failure in their biological context, linking processes, structure and properties at multiple scales through a materials science approach. The actual term 'genomics' is thought to have been coined by Dr. Tom Roderick, a geneticist at the Jackson Laboratory (Bar Harbor, ME) over beer at a meeting held in Maryland on the mapping of the human genome in 1986.</span></p><p><span style="font-size: medium;">In 1972, </span><a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers">Walter Fiers</a> span style="font-size: medium;">Walter Fiers</span></a><span style="font-size: medium;"> and his team at the Laboratory of Molecular Biology of the </span><a class="mw-redirect" title="University of Ghent" href="http://en.wikipedia.org/wiki/University_of_Ghent"><span style="font-size: medium;">University of Ghent</span></a><span style="font-size: medium;"> (</span><a title="Ghent" href="http://en.wikipedia.org/wiki/Ghent"><span style="font-size: medium;">Ghent</span></a>, <a titlespan style="Belgiumfont-size: medium;">, </span><a title="Belgium" href="http://en.wikipedia.org/wiki/Belgium"><span style="font-size: medium;">Belgium</span></a><span style="font-size: medium;">) were the first to determine the sequence of a gene: the gene for </span><a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2"><span style="font-size: medium;">Bacteriophage MS2</span></a><span style="font-size: medium;"> coat protein.</span><sup class="reference" id="cite_ref-1"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-1"><spanstyle="font-size: medium;">[2]</span>2<span/a>]</spansup></a></supspan style="font-size: medium;"> In 1976, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.</span><sup class="reference" id="cite_ref-2"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-2"><spanstyle="font-size: medium;">[</span>3<span>]</span></a></sup> The first <span style="font-size: medium;"> The first DNA-based genome to be sequenced in its entirety was that of </span><a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage"><span style="font-size: medium;">bacteriophage</span></a> <a class="mw-redirect" title="Phi-X174 phage" href="http://en.wikipedia.org/wiki/Phi-X174_phage"><span style="font-size: medium;">Φ-X174;</span></a><span style="font-size: medium;"> (5,368 </span><a title="Base pair" href="http://en.wikipedia.org/wiki/Base_pair"><span style="font-size: medium;">bp</span></a><span style="font-size: medium;">), sequenced by <a /span><a title="Frederick Sanger" href="http://en.wikipedia.org/wiki/Frederick_Sanger"><span style="font-size: medium;">Frederick Sanger</span></a><span style="font-size: medium;"> in 1977.</span><sup class="reference" id="cite_ref-3"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-3"><spanstyle="font-size: medium;">[</span>4<span>]4]</span></a></sup></p><p><span style="font-size: medium;">The first free-living organism to be sequenced was that of </span><i><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae"><span style="font-size: medium;">Haemophilus influenzae</span></a></i> (1.8 <span style="font-size: medium;"> (1.8 </span><a title="Base pair" href="http://en.wikipedia.org/wiki/Base_pair"><span style="font-size: medium;">Mb</span></a>) in 1995<sup classspan style="referencefont-size: medium;">) in 1995</span><sup class="reference" id="cite_ref-4"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-4"><spanstyle="font-size: medium;">[</span>5<span>]</span></a></sup>, and since then <span style="font-size: medium;">, and since then genomes are being sequenced at a rapid pace.</span></p><p><span style="font-size: medium;">As of September 2007, the complete sequence was known of about 1879 </span><a title="Virus" href="http://en.wikipedia.org/wiki/Virus"><span style="font-size: medium;">viruses</aspan></a><span style="font-size: medium;">,</span>,<sup class="reference" id="cite_ref-5"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-5"><spanstyle="font-size: medium;">[</span>6<span>]</span></a></sup> 577 <a titlespan style="Bacteria" href="http://en.wikipedia.org/wiki/Bacteriafont-size: medium;">bacterial577 </aspan> species and roughly 23 <a title="EukaryoteBacteria" href="http://en.wikipedia.org/wiki/EukaryoteBacteria">eukaryote</aspan style="font-size: medium;">bacterial</span> organisms, of which about half are </a class><span style="mwfont-redirectsize: medium;" > species and roughly 23 </span><a title="FungiEukaryote" href="http://en.wikipedia.org/wiki/FungiEukaryote">fungi</a>. <sup classspan style="reference" id="cite_reffont-6size: medium;">eukaryote</span></a href><span style="httpfont-size://medium;"> organisms, of which about half are </span><a class="mw-redirect" title="Fungi" href="http://en.wikipedia.org/wiki/Genomics#cite_note-6Fungi"><span>[style="font-size: medium;">fungi</span>7<span/a>]</spanstyle="font-size: medium;">. </aspan></supclass="reference" id="cite_ref-6"> Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as <i><a title="Haemophilus influenzae" <a href="http://en.wikipedia.org/wiki/Haemophilus_influenzaeGenomics#cite_note-6">Haemophilus influenzae<span style="font-size: medium;">[7]</span></a></isup><span style="font-size: medium;">. Of Most of the other bacteria whose genomes have been completely sequenced speciesare problematic disease-causing agents, most were chosen because they were well-studied model organisms or promised to become good models. Yeast (such as </span><i><a title="Saccharomyces cerevisiaeHaemophilus influenzae" href="http://en.wikipedia.org/wiki/Saccharomyces_cerevisiaeHaemophilus_influenzae"><span style="font-size: medium;">Saccharomyces cerevisiaeHaemophilus influenzae</span></a></i>) has long been an important <a titlespan style="Model organismfont-size: medium;" href="http://en>. Of the other sequenced species, most were chosen because they were well-studied model organisms or promised to become good models.wikipedia.orgYeast (</wiki/Model_organism"span>model organism</ai> for the <a class="mw-redirect" title="Eukaryotic cellSaccharomyces cerevisiae" href="http://en.wikipedia.org/wiki/Eukaryotic_cellSaccharomyces_cerevisiae"><span style="font-size: medium;">eukaryotic cellSaccharomyces cerevisiae</aspan></a>, while the fruit fly </i><span style="font-size: medium;">) has long been an important </span><a title="Drosophila melanogasterModel organism" href="http://en.wikipedia.org/wiki/Drosophila_melanogasterModel_organism">Drosophila melanogaster<span style="font-size: medium;">model organism</aspan></ia> has been a very important tool (notably in early pre-molecular <a titlespan style="Geneticsfont-size: medium;" href="http://en.wikipedia.org/wiki/Genetics">genetics> for the </a>). The worm <ispan><a class="mw-redirect" title="Caenorhabditis elegansEukaryotic cell" href="http://en.wikipedia.org/wiki/Caenorhabditis_elegansEukaryotic_cell"><span style="font-size: medium;">Caenorhabditis eleganseukaryotic cell</aspan></ia> is an often used simple model for <a titlespan style="Multicellular organismfont-size: medium;" href="http://en.wikipedia.org/wiki/Multicellular_organism">multicellular organisms>, while the fruit fly </aspan>. The zebrafish <i><a class="mw-redirect" title="Brachydanio rerioDrosophila melanogaster" href="http://en.wikipedia.org/wiki/Brachydanio_rerioDrosophila_melanogaster"><span style="font-size: medium;">Brachydanio rerioDrosophila melanogaster</aspan></ia> is used for many developmental studies on the molecular level and the flower </i><a titlespan style="Arabidopsis thalianafont-size: medium;"> has been a very important tool (notably in early pre-molecular </span><a title="Genetics" href="http://en.wikipedia.org/wiki/Arabidopsis_thalianaGenetics">Arabidopsis thaliana</a>span style="font-size: medium;">genetics</ispan> is </a model organism for flowering plants><span style="font-size: medium;">). The worm </span><i><a classtitle="mw-redirect" title="Japanese pufferfishCaenorhabditis elegans" href="http://en.wikipedia.org/wiki/Japanese_pufferfishCaenorhabditis_elegans"><span style="font-size: medium;">Japanese pufferfishCaenorhabditis elegans</span></a> (</i><a titlespan style="Takifugu rubripesfont-size: medium;"> is an often used simple model for </span><a title="Multicellular organism" href="http://en.wikipedia.org/wiki/Takifugu_rubripesMulticellular_organism"><span style="font-size: medium;">Takifugu rubripesmulticellular organisms</aspan></a><span style="font-size: medium;">. The zebrafish </span><i>) and the <a class="mw-redirect" title="Spotted green pufferfishBrachydanio rerio" href="http://en.wikipedia.org/wiki/Spotted_green_pufferfishBrachydanio_rerio">spotted green pufferfish</a> (<ispan style="font-size: medium;">Brachydanio rerio<a title="Tetraodon nigroviridis" href="http://en.wikipedia.org/wiki/Tetraodon_nigroviridis"span>Tetraodon nigroviridis</a></i>) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. <sup class<span style="reference" id="cite_reffont-7size: medium;"><a is used for many developmental studies on the molecular level and the flower </span><i><a title="Arabidopsis thaliana" href="http://en.wikipedia.org/wiki/Genomics#cite_note-7Arabidopsis_thaliana"><spanstyle="font-size: medium;">[Arabidopsis thaliana</span>8<span/a>]</i><spanstyle="font-size: medium;"></is a>model organism for flowering plants. The </supspan> <sup a class="referencemw-redirect" idtitle="cite_ref-8Japanese pufferfish"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-8Japanese_pufferfish"><spanstyle="font-size: medium;">[Japanese pufferfish</span>9<span/a>]</spanstyle="font-size: medium;">(</aspan></sup> The mammals dog (<i><a class="mw-redirect" title="Canis familiarisTakifugu rubripes" href="http://en.wikipedia.org/wiki/Canis_familiarisTakifugu_rubripes"><span style="font-size: medium;">Canis familiarisTakifugu rubripes</span></a></i><span style="font-size: medium;">), and the </span><sup a class="referencemw-redirect" idtitle="cite_ref-9Spotted green pufferfish"><a href="http://en.wikipedia.org/wiki/Genomics#cite_noteSpotted_green_pufferfish"><span style="font-9size: medium;">spotted green pufferfish</span>[</spana>10<spanstyle="font-size: medium;">](</span></a></sup> brown rat (<i><a classtitle="mw-redirect" title="Rattus norvegicusTetraodon nigroviridis" href="http://en.wikipedia.org/wiki/Rattus_norvegicusTetraodon_nigroviridis"><span style="font-size: medium;">Rattus norvegicusTetraodon nigroviridis</aspan></ia>), mouse (</i><a classspan style="mwfont-redirect" title="Mus musculus" href="httpsize://en.wikipedia.org/wiki/Mus_musculusmedium;">Mus musculus</a></i>), are interesting because of their small and chimpanzee (compact genomes, containing very little non-coding DNA compared to most species. <i/span><a sup class="mw-redirectreference" titleid="Pan troglodytescite_ref-7" href><a href="http://en.wikipedia.org/wiki/Pan_troglodytesGenomics#cite_note-7"><span style="font-size: medium;">Pan troglodytes[8]</span></a></isup>) are all important model animals in medical research<sup class="reference" id="cite_ref-8"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-8"><span style="font-size: medium;">[9]</span></a></sup><span style="font-size: medium;"> The mammals dog (</span><i><a class="mw-redirect" title="Canis familiaris" href="http://en.wikipedia.org/wiki/Canis_familiaris"><span style="font-size: medium;">Canis familiaris</span></a></i><span style="font-size: medium;">), </span><sup class="reference" id="cite_ref-9"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-9"><span style="font-size: medium;">[10]</span></a></sup><span style="font-size: medium;"> brown rat (</span><i><a class="mw-redirect" title="Rattus norvegicus" href="http://en.wikipedia.org/wiki/Rattus_norvegicus"><span style="font-size: medium;">Rattus norvegicus</span></a></i><span style="font-size: medium;">), mouse (</span><i><a class="mw-redirect" title="Mus musculus" href="http://en.wikipedia.org/wiki/Mus_musculus"><span style="font-size: medium;">Mus musculus</span></a></i><span style="font-size: medium;">), and chimpanzee (</span><i><a class="mw-redirect" title="Pan troglodytes" href="http://en.wikipedia.org/wiki/Pan_troglodytes"><span style="font-size: medium;">Pan troglodytes</span></a></i><span style="font-size: medium;">) are all important model animals in medical research.</span></p><p> </p>
<h2><span id="Human_genomics" class="mw-headline">Human genomics</span></h2>
<p><span style="font-size: medium;">A rough draft of the human genome was completed by the </span><a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project"><span style="font-size: medium;">Human Genome Project</span></a><span style="font-size: medium;"> in early 2001, creating much fanfare. By 2007 the human sequence was declared "finished" (less than one error in 20,000 bases and all chromosomes assembled). Display of the results of the project required significant </span><a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics"><span style="font-size: medium;">bioinformatics</span></a><span style="font-size: medium;"> resources. The sequence of the human </span><a class="mw-redirect" title="Reference assembly" href="http://en.wikipedia.org/wiki/Reference_assembly"><span style="font-size: medium;">reference assembly</span></a><span style="font-size: medium;"> can be explored using the </span><a title="UCSC Genome Browser" href="http://en.wikipedia.org/wiki/UCSC_Genome_Browser"><span style="font-size: medium;">UCSC Genome Browser</span></a><span style="font-size: medium;"> or </span><a title="Ensembl" href="http://en.wikipedia.org/wiki/Ensembl"><span style="font-size: medium;">Ensembl</span></a><span style="font-size: medium;">.</span></p><p> </p>
<h2><span id="Bacteriophage_genomics" class="mw-headline">Bacteriophage genomics</span></h2>
<p><a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">Bacteriophages</a> have played and continue to play a key role in bacterial <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a> and <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>. Historically, they were used to define <a title="Gene" href="http://en.wikipedia.org/wiki/Gene">gene</a> structure and gene regulation. Also the first <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a> to be sequenced was a <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophage</a>. However, bacteriophage research did not lead the genomics revolution, which is clearly dominated by bacterial genomics. Only very recently has the study of bacteriophage genomes become prominent, thereby enabling researchers to understand the mechanisms underlying <a class="mw-redirect" title="Phage" href="http://en.wikipedia.org/wiki/Phage">phage</a> evolution. Bacteriophage genome sequences can be obtained through direct sequencing of isolated bacteriophages, but can also be derived as part of microbial genomes. Analysis of bacterial genomes has shown that a substantial amount of microbial DNA consists of <a title="Prophage" href="http://en.wikipedia.org/wiki/Prophage">prophage</a> sequences and prophage-like elements. A detailed database mining of these sequences offers insights into the role of prophages in shaping the bacterial genome.<sup class="reference" id="cite_ref-McGrath_10-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-McGrath-10"><span>[</span>11<span>]</span></a></sup></p>
<p> </p>
<h2><span id="Cyanobacteria_genomics" class="mw-headline">Cyanobacteria genomics</span></h2>
<p>At present there are 24 <a title="Cyanobacteria" href="http://en.wikipedia.org/wiki/Cyanobacteria">cyanobacteria</a> for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six <i><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus">Prochlorococcus</a></i> strains, seven marine <i><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus">Synechococcus</a></i> strains, <i><a title="Trichodesmium erythraeum (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Trichodesmium_erythraeum&action=edit&redlink=1">Trichodesmium erythraeum</a></i> IMS101 and <i><a title="Crocosphaera watsonii (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Crocosphaera_watsonii&action=edit&redlink=1">Crocosphaera watsonii</a></i> <a title="WH8501 (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=WH8501&action=edit&redlink=1">WH8501</a>. Several studies have demonstrated how these sequences could be used very successfully to infer important ecological and physiological characteristics of marine cyanobacteria. However, there are many more genome projects currently in progress, amongst those there are further <i><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus">Prochlorococcus</a></i> and marine <i><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus">Synechococcus</a></i> isolates, <i><a title="Acaryochloris (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Acaryochloris&action=edit&redlink=1">Acaryochloris</a></i> and <i><a title="Prochloron" href="http://en.wikipedia.org/wiki/Prochloron">Prochloron</a></i>, the N<sub>2</sub>-fixing filamentous cyanobacteria <i><a title="Nodularia spumigena (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Nodularia_spumigena&action=edit&redlink=1">Nodularia spumigena</a></i>, <i><a title="Lyngbya aestuarii (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Lyngbya_aestuarii&action=edit&redlink=1">Lyngbya aestuarii</a></i> and <i><a title="Lyngbya majuscula" href="http://en.wikipedia.org/wiki/Lyngbya_majuscula">Lyngbya majuscula</a></i>, as well as <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophages</a> infecting marine cyanobaceria. Thus, the growing body of genome information can also be tapped in a more general way to address global problems by applying a comparative approach. Some new and exciting examples of progress in this field are the identification of genes for regulatory RNAs, insights into the evolutionary origin of <a title="Photosynthesis" href="http://en.wikipedia.org/wiki/Photosynthesis">photosynthesis</a>, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.<sup class="reference" id="cite_ref-Herrero_11-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-Herrero-11"><span>[</span>12<span>]</span></a></sup></p>
<p> </p>
<h2><span id="See_also" class="mw-headline">See also</span></h2>
<ul>
<li><a class="mw-redirect" title="Psychogenomics" href="http://en.wikipedia.org/wiki/Psychogenomics">Psychogenomics</a></li>
</ul>
<p> </p>
<h2><span id="References" class="mw-headline">References</span></h2>
<div style="-moz-column-count: 2; -webkit-column-count: 2; column-count: 2; list-style-type: decimal;" class="reflist references-column-count references-column-count-2">
</ol>
</div>
<h2> </h2>
<h2><span id="External_links" class="mw-headline">External links</span></h2>
<ul>
<li><a class="external text" rel="nofollow" href="http://www.extension.org/plant_breeding_genomics">The Plant Breeding and Genomics Community of Practice on eXtension</a> - provides education and training materials for plant breeders and allied professionals</li>
</ul>
<p> </p>
<p> </p>