Changes

From Biolecture.org
no edit summary
The concept of logarithm as the inverse of exponentiation extends to other mathematical structures as well. However, in general settings, the logarithm tends to be a multi-valued function. For example, the&nbsp;[https://en.wikipedia.org/wiki/Complex_logarithm complex logarithm]&nbsp;is the multi-valued&nbsp;[https://en.wikipedia.org/wiki/Inverse_function inverse]&nbsp;of the complex exponential function. Similarly, the&nbsp;[https://en.wikipedia.org/wiki/Discrete_logarithm discrete logarithm]&nbsp;is the multi-valued inverse of the exponential function in finite groups; it has uses in&nbsp;[https://en.wikipedia.org/wiki/Public-key_cryptography public-key cryptography].<br/> <br/> full text link&nbsp;:&nbsp;[https://en.wikipedia.org/wiki/Logarithm https://en.wikipedia.org/wiki/Logarithm]<br/> &nbsp;
 === Likely hoodLikelihood === The&nbsp;'''likelihood function'''&nbsp;(often simply called the&nbsp;'''likelihood''') is the&nbsp;[https://en.wikipedia.org/wiki/Joint_probability_distribution joint]&nbsp;[https://en.wikipedia.org/wiki/Probability_mass_function probability mass]&nbsp;(or&nbsp;[https://en.wikipedia.org/wiki/Probability_density_function probability density]) of&nbsp;[https://en.wikipedia.org/wiki/Sample_(statistics) observed data]&nbsp;viewed as a function of the&nbsp;[https://en.wikipedia.org/wiki/Statistical_parameter parameters]&nbsp;of a&nbsp;[https://en.wikipedia.org/wiki/Statistical_model statistical model].<sup id="cite_ref-1">[https://en.wikipedia.org/wiki/Likelihood_function#cite_note-1 [1]]</sup><sup id="cite_ref-2">[https://en.wikipedia.org/wiki/Likelihood_function#cite_note-2 [2]]</sup><sup id="cite_ref-3">[https://en.wikipedia.org/wiki/Likelihood_function#cite_note-3 [3]]</sup>&nbsp;Intuitively, the likelihood function&nbsp;๐ฟ(๐œƒโˆฃ๐‘ฅ)<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/24a053912e70a2d35f7037375a39f9f7c3ea72d4>&nbsp;is the probability of observing data&nbsp;๐‘ฅ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4>&nbsp;assuming&nbsp;๐œƒ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af>&nbsp;is the actual parameter. In&nbsp;[https://en.wikipedia.org/wiki/Maximum_likelihood_estimation maximum likelihood estimation], the&nbsp;[https://en.wikipedia.org/wiki/Arg_max arg max]&nbsp;(over the parameter&nbsp;๐œƒ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af>) of the likelihood function serves as a&nbsp;[https://en.wikipedia.org/wiki/Point_estimation point estimate]&nbsp;for&nbsp;๐œƒ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af>, while the&nbsp;[https://en.wikipedia.org/wiki/Fisher_information Fisher information]&nbsp;(often approximated by the likelihood's&nbsp;[https://en.wikipedia.org/wiki/Hessian_matrix Hessian matrix]) indicates the estimate's&nbsp;[https://en.wikipedia.org/wiki/Precision_(statistics) precision]. In contrast, in&nbsp;[https://en.wikipedia.org/wiki/Bayesian_statistics Bayesian statistics], parameter estimates are derived from the&nbsp;''converse''&nbsp;of the likelihood, the so-called&nbsp;[https://en.wikipedia.org/wiki/Posterior_probability posterior probability], which is calculated via&nbsp;[https://en.wikipedia.org/wiki/Bayes'_theorem Bayes' rule].<sup id="cite_ref-4">[https://en.wikipedia.org/wiki/Likelihood_function#cite_note-4 [4]]</sup><br/> &nbsp; The likelihood function, parameterized by a (possibly multivariate) parameter&nbsp;๐œƒ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af>, is usually defined differently for&nbsp;[https://en.wikipedia.org/wiki/Continuous_or_discrete_variable discrete and continuous]&nbsp;[https://en.wikipedia.org/wiki/Probability_distribution probability distributions]&nbsp;(a more general definition is discussed below). Given a probability density or mass function &nbsp; ๐‘ฅโ†ฆ๐‘“(๐‘ฅโˆฃ๐œƒ),<br/> <img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/442aa0f5b4796ef4a698a7e60aeb5006c8f020f2> &nbsp; where&nbsp;๐‘ฅ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4>&nbsp;is a realization of the random variable&nbsp;๐‘‹<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab>, the likelihood function is ๐œƒโ†ฆ๐‘“(๐‘ฅโˆฃ๐œƒ),<br/> <img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/e161b494cb41c7ddbb8d496ece959b776baba128><br/> often written<br/> ๐ฟ(๐œƒโˆฃ๐‘ฅ).<br/> <img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/487868b15b5aaccd5bf67e86c197d68f37fadc8f> &nbsp; In other words, when&nbsp;๐‘“(๐‘ฅโˆฃ๐œƒ)<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/0f01a2e70b1a8595be545c42562f00820bbff06d>&nbsp;is viewed as a function of&nbsp;๐‘ฅ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4>&nbsp;with&nbsp;๐œƒ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af>&nbsp;fixed, it is a probability density function, and when viewed as a function of&nbsp;๐œƒ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af>&nbsp;with&nbsp;๐‘ฅ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4>&nbsp;fixed, it is a likelihood function. In the&nbsp;[https://en.wikipedia.org/wiki/Frequentist_probability frequentist paradigm], the notation&nbsp;๐‘“(๐‘ฅโˆฃ๐œƒ)<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/0f01a2e70b1a8595be545c42562f00820bbff06d>&nbsp;is often avoided and instead&nbsp;๐‘“(๐‘ฅ;๐œƒ)<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/79480c3540803bdda2613d69277692e1061ad7d5>&nbsp;or&nbsp;๐‘“(๐‘ฅ,๐œƒ)<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/3e3b8aafdf0be69fcd09cdb756b9c5aa2fd8c777>&nbsp;are used to indicate that&nbsp;๐œƒ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af>&nbsp;is regarded as a fixed unknown quantity rather than as a&nbsp;[https://en.wikipedia.org/wiki/Random_variable random variable]&nbsp;being conditioned on. The likelihood function does&nbsp;''not''&nbsp;specify the probability that&nbsp; ๐œƒ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af>&nbsp;is the truth, given the observed sample&nbsp;๐‘‹=๐‘ฅ<img style="null" src=https://wikimedia.org/api/rest_v1/media/math/render/svg/0661396d873679039ffe8e908a39f02402d4912d>. Such an interpretation is a common error, with potentially disastrous consequences (see&nbsp;[https://en.wikipedia.org/wiki/Prosecutor's_fallacy prosecutor's fallacy]).<br/> <br/> full text link&nbsp;:&nbsp;[https://en.wikipedia.org/wiki/Likelihood_function https://en.wikipedia.org/wiki/Likelihood_function]
&nbsp;
82
edits

Navigation menu