Whale genomes YY

From Biolecture.org

Minke whale genome and aquatic adaptation in cetaceans

Abstract

The shift from terrestrial to aquatic life by whales was a substantial evolutionary event. Here we report the whole-genome sequencing and de novo assembly of the minke whale genome, as well as the whole-genome sequences of three minke whales, a fin whale, a bottlenose dolphin and a finless porpoise. Our comparative genomic analysis identified an expansion in the whale lineage of gene families associated with stress-responsive proteins and anaerobic metabolism, whereas gene families related to body hair and sensory receptors were contracted. Our analysis also identified whale-specific mutations in genes encoding antioxidants and enzymes controlling blood pressure and salt concentration. Overall the whale-genome sequences exhibited distinct features that are associated with the physiological and morphological changes needed for life in an aquatic environment, marked by resistance to physiological stresses caused by a lack of oxygen, increased amounts of reactive oxygen species and high salt levels.

 

Orthologous gene clusters in the artiodactyl lineage.      

 

Conclusion

To the best of our knowledge, the minke whale reference genome is the first high-depth marine mammalian genome to be sequenced. The cetacean genomes support hypotheses regarding adaptation to hypoxic resistance, metabolism under limited oxygen and high-salt conditions and the development of unique morphological traits. In particular, the expansion of antioxidant-related genes and whalespecific variations in glutathione-associated and haptoglobin proteins are evidence for adaptation to hypoxic conditions during diving. These data will contribute to future studies of marine mammal diseases, conservation and evolution.