Changes

From Biolecture.org

Genome

28,703 bytes removed, 20:52, 26 November 2016
no edit summary
<p>[[DNA]]<font color="#000000"br />[[RNA]]<font size="3"/p>The&nbsp; <strongp>genome[[Codon]]</strongp> is the entire&nbsp;set of sequences in an organism that&nbsp;encodes information for survival and the&nbsp;continuation of the species it belongs to.  </font></fontp>[[PCR]]</p> 
<p>&nbsp;</p>
 <p>The&nbsp;<strong>genome</strong> is the entire&nbsp;set of sequences in an organism that&nbsp;encodes information for survival and the&nbsp;continuation of the species it belongs to.</p> <p>&nbsp;</p> <p><span style="font-size: large"><font color="#000000">Main function of genomes</font></span></p> <p><font color="#000000"><font size="3">The main function of genome is information storaging and processing to form an entity that utilizes energy to keep processing signals to interact with other genomes in the whole eco-system.</font><br />
<br />
<font size="3">The genome is universal in the universe and aliens living&nbsp;on other planets also have genomes. The chemical construction may be slightly different but the information deposition and processing function is the same.</font></font></p> <p><font color="#000000"><font size="3">The information is usually stored&nbsp;in DNA or RNA in the organisms found on Earth.<br />
<br />
The genome is often classified&nbsp;into the protein coding genes and the non-coding sequences of the DNA historically.<sup id="cite_ref-0" class="reference"><font size="2"><font size="3"><span>[</span>1</font><span><font size="3">]</font><br /></span></font></sup></font></font></p> 
<p>&nbsp;</p>
 <p><span style="font-size: large"><font color="#000000">The essence of genome</font></span></p> <p><font color="#000000"><font size="3">The essence of genomes is that it is the foundation of spontaneous information processing network that can utilizes energy in time axis. The genome is a kind of linearly expressed language system.</font></font><font color="#000000"><font size="3"><br />&nbsp;<br /p></font></font></p>
<p>&nbsp;</p>
 <p><span style="font-size: large"><span id="Origin_of_Term" class="mw-headline"><font color="#000000">Origin of Term</font></span></span></p> <p><span style="font-size: small"><font color="#000000">The term was adapted in 1920 by [[Hans Winkler]], Professor of Botany at the University of Hamburg, Germany. In Greek, the word <em>genome</em> (&gamma;ί&nu;&omicron;&mu;&alpha;&iota;) means I become, I am born, to come into being. </font></span></p> <p><span style="font-size: small"><font color="#000000">The Oxford English Dictionary suggests the name to be a blend of the words <em><strong>gen</strong>e</em> and <em>chromos<strong>ome</strong></em>. A few related <em>-ome</em> words already existed, such as <em>biome</em> and <em>rhizome</em>, forming a vocabulary into which <em>genome</em> fits systematically.<sup id="cite_ref-1" class="reference">[2]</sup></font></span></p> <p><span style="font-size: large"><span id="Overview" class="mw-headline"><font color="#000000">Overview</font></span></span></p> <p><span style="font-size: small"><font color="#000000">Some organisms have multiple copies of chromosomes, diploid, triploid, tetraploid and so on. In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half of the number of chromosome of the somatic cell and the genome is a full set of chromosomes in a gamete. In haploid organisms, including cells of bacteria, archaea, and in organelles including mitochondria and chloroplasts, or viruses, that similarly contain genes, the single or set of circular and/or linear chains of DNA (or RNA for some viruses), likewise constitute the <em>genome</em>. The term genome can be applied specifically to mean that stored on a complete set of <em>nuclear DNA</em> (i.e., the &quot;nuclear genome&quot;) but can also be applied to that stored within organelles that contain their own DNA, as with the &quot;mitochondrial genome&quot; or the &quot;chloroplast genome&quot;. Additionally, the genome can comprise nonchromosomal genetic elements such as viruses, plasmids, and transposable elements<sup id="cite_ref-Brock_2-0" class="reference">[3]</sup>. When people say that the genome of a sexually reproducing species has been &quot;sequenced&quot;, typically they are referring to a determination of the sequences of one set of autosomes and one of each type of sex chromosome, which together represent both of the possible sexes. Even in species that exist in only one sex, what is described as &quot;a genome sequence&quot; may be a composite read from the chromosomes of various individuals. In general use, the phrase &quot;genetic makeup&quot; is sometimes used conversationally to mean the genome of a particular individual or organism. The study of the global properties of genomes of related organisms is usually referred to as genomics, which distinguishes it from genetics which generally studies the properties of single genes or groups of genes.</font></span></p> <p><span style="font-size: small"><font color="#000000">Both the number of base pairs and the number of genes vary widely from one species to another, and there is only a rough correlation between the two (an observation known as the C-value paradox). At present, the highest known number of genes is around 60,000, for the protozoan causing trichomoniasis (see List of sequenced eukaryotic genomes), almost three times as many as in the human genome.</font></span></p> <p><span style="font-size: small"><font color="#000000">An analogy to the human genome stored on DNA is that of instructions stored in a library:</font></span></p> 
<ul>
<li><span style="font-size: small"><font color="#000000">The library would contain 46 books (chromosomes)</font> </span></li> <li><span style="font-size: small"><font color="#000000">The books range in size from 400 to 3340 pages (genes)</font> </span></li> <li><span style="font-size: small"><font color="#000000">which is 48 to 250 million letters (A,C,G,T) per book.</font> </span></li> <li><span style="font-size: small"><font color="#000000">Hence the library contains over six billion letters total;</font> </span></li> <li><span style="font-size: small"><font color="#000000">The library fits into a cell nucleus the size of a pinpoint;</font> </span></li> <li><span style="font-size: small"><font color="#000000">A copy of the library (all 46 books) is contained in almost every cell of our body.</font> </span></li>
</ul>
 <p><span style="font-size: large"><span id="Types" class="mw-headline"><font color="#000000">Types</font></span></span></p> <p><span style="font-size: small"><font color="#000000">Most biological entities that are more complex than a virus sometimes or always carry additional genetic material besides that which resides in their chromosomes. In some contexts, such as sequencing the genome of a pathogenic microbe, &quot;genome&quot; is meant to include information stored on this auxiliary material, which is carried in plasmids. In such circumstances then, &quot;genome&quot; describes all of the genes and information on non-coding DNA that have the potential to be present.</font></span></p> <p><span style="font-size: small"><font color="#000000">In eukaryotes such as plants, protozoa and animals, however, &quot;genome&quot; carries the typical connotation of only information on chromosomal DNA. So although these organisms contain chloroplasts and/or mitochondria that have their own DNA, the genetic information contained by DNA within these organelles is not considered part of the genome. In fact, mitochondria are sometimes said to have their own genome often referred to as the &quot;mitochondrial genome&quot;. The DNA found within the chloroplast may be referred to as the &quot;plastome&quot;.</font></span></p> <p><span style="font-size: large"><span id="Genomes_and_genetic_variation" class="mw-headline"><font color="#000000">Genomes and genetic variation</font></span></span></p> <p><span style="font-size: small"><font color="#000000">Note that a genome does not capture the genetic diversity or the genetic polymorphism of a species. For example, the human genome sequence in principle could be determined from just half the information on the DNA of one cell from one individual. To learn what variations in genetic information underlie particular traits or diseases requires comparisons across individuals. This point explains the common usage of &quot;genome&quot; (which parallels a common usage of &quot;gene&quot;) to refer not to the information in any particular DNA sequence, but to a whole family of sequences that share a biological context.</font></span></p> <p><span style="font-size: small"><font color="#000000">Although this concept may seem counter intuitive, it is the same concept that says there is no particular shape that is the shape of a cheetah. Cheetahs vary, and so do the sequences of their genomes. Yet both the individual animals and their sequences share commonalities, so one can learn something about cheetahs and &quot;cheetah-ness&quot; from a single example of either.</span></p> <p>&nbsp;</p> <p><span style="font-size:large">Sequencing and mapping</span></p> <div class="rellink boilerplate seealso"><span style="font-size:small">For more details on this topic, see Genome project.</span></div> <p><span style="font-size:small">The Human Genome Project was organized to map and to sequence the human genome. Other genome projects include mouse, rice, the plant <em>Arabidopsis thaliana</em>, the puffer fish, bacteria like E. coli, etc. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (bacteriophage MS2). The first DNA-genome project to be completed was the Phage &Phi;-X174, with only 5386 base pairs, which was sequenced by Fred Sanger in 1977 . The first bacterial genome to be completed was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995.</span></p> <p><span style="font-size:small">The development of new technologies has dramatically decreased the difficulty and cost of sequencing, and the number of complete genome sequences is rising rapidly. Among many genome database sites, the one maintained by the US National Institutes of Health is inclusive.<sup>[4]</sup></span></p> <p><span style="font-size:small">These new technologies open up the prospect of personal genome sequencing as an important diagnostic tool. A major step toward that goal was the May 2007 <em>New York Times</em> announcement that the full genome of DNA pioneer James D. Watson was deciphered.<sup>[5]</sup></span></p> <p><span style="font-size:small">Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome.<sup>[6]</sup><sup>[7]</sup></span></p> <h2>Comparison of different genome sizes</h2> <div class="rellink relarticle mainarticle"><span style="font-size:small">Main article: Genome size</span></div> 
<p>&nbsp;</p>
<p><span style="font-size: large"><span id="Sequencing_and_mapping" class="mw-headline"><font color="#000000">Sequencing and mapping</font></span></span></p><div class="rellink boilerplate seealso"><span style="font-size: small"><font color="#000000">For more details on this topic, see Genome project.</font></span></div><p><span style="font-size: small"><font color="#000000">The Human Genome Project was organized to map and to sequence the human genome. Other genome projects include mouse, rice, the plant <em>Arabidopsis thaliana</em>, the puffer fish, bacteria like E. coli, etc. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (bacteriophage MS2). The first DNA-genome project to be completed was the Phage &Phi;-X174, with only 5386 base pairs, which was sequenced by Fred Sanger in 1977 . The first bacterial genome to be completed was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995.</font></span></p><p><span style="font-size: small"><font color="#000000">The development of new technologies has dramatically decreased the difficulty and cost of sequencing, and the number of complete genome sequences is rising rapidly. Among many genome database sites, the one maintained by the US National Institutes of Health is inclusive.<sup id="cite_ref-3" class="reference">[4]</sup></font></span></p><p><span style="font-size: small"><font color="#000000">These new technologies open up the prospect of personal genome sequencing as an important diagnostic tool. A major step toward that goal was the May 2007 <em>New York Times</em> announcement that the full genome of DNA pioneer James D. Watson was deciphered.<sup id="cite_ref-4" class="reference">[5]</sup></font></span></p><p><span style="font-size: small"><font color="#000000">Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome.<sup id="cite_ref-5" class="reference">[6]</sup><sup id="cite_ref-6" class="reference">[7]</sup></font></span></p><h2><span id="Comparison_of_different_genome_sizes" class="mw-headline"><font color="#000000">Comparison of different genome sizes</font></span></h2><div class="rellink relarticle mainarticle"><span style="font-size: small"><font colortable class="#000000sortable wikitable">Main article: Genome size</font></span></div><p><table id="sortable_table_id_0" class="wikitable sortable"> <tbody> <tr> <th><font color="#000000">Organism type<span class="sortarrow"><img alt="&darr;" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th> <th><font color="#000000">Organism<span class="sortarrow"><img alt="&darr;" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th> <th><font color="#000000">Genome size (base pairs)<span class="sortarrow"><img alt="&darr;" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th> <th><font color="#000000">mass - in pg<span class="sortarrow"><img alt="&darr;" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th> <th><font color="#000000">Note<span class="sortarrow"><img alt="&darr;" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th> </tr> <tr> <td><font color="#000000">Virus</font></td> <td><font color="#000000">Bacteriophage MS2</font></td> <td align="right"><font color="#000000">3,569</font></td> <td align="right"><font color="#000000">0.000002</font></td> <td><font color="#000000">First sequenced RNA-genome<sup id="cite_ref-Fiers1976_7-0" class="reference"><font size="2"><span>[</span>8<span>]</span></font></sup></font></td> </tr> <tr> <td><font color="#000000">Virus</font></td> <td><font color="#000000">SV40</font></td> <td align="right"><font color="#000000">5,224</font></td> <td>&nbsp;</td> <td><sup id="cite_ref-Fiers1978_8-0" class="reference"><font size="2"><font color="#000000"><span>[</span>9<span>]</span></font></font></sup></td> </tr> <tr> <td><font color="#000000">Virus</font></td> <td><font color="#000000">Phage &Phi;-X174</font></td> <td align="right"><font color="#000000">5,386</font></td> <td>&nbsp;</td> <td><font color="#000000">First sequenced DNA-genome<sup id="cite_ref-Sanger1977_9-0" class="reference"><font size="2"><span>[</span>10<span>]</span></font></sup></font></td> </tr> <tr> <td><font color="#000000">Virus</font></td> <td><font color="#000000">HIV</font></td> <td align="right"><font color="#000000">9749<sup id="cite_ref-10" class="reference"><font size="2"><span>[</span>11<span>]</span></font></sup></font></td> <td>&nbsp;</td> <td>&nbsp;</td> </tr> <tr> <td><font color="#000000">Virus</font></td> <td><font color="#000000">Phage &lambda;</font></td> <td align="right"><font color="#000000">48,502</font></td> <td>&nbsp;</td> </tr> <tr> <td><font color="#000000">Virus</font></td> <td><font color="#000000">Mimivirus</font></td> <td align="right"><font color="#000000">1,181,404</font></td> <td>&nbsp;</td> <td><font color="#000000">Largest known viral genome</font></td> </tr> <tr> <td><font color="#000000">Bacterium</font></td> <td><em><font color="#000000">Haemophilus influenzae</font></em></td> <td align="right"><font color="#000000">1,830,000</font></td> <td>&nbsp;</td> <td><font color="#000000">First genome of living organism, July 1995<sup id="cite_ref-Fleichmann_1995_11-0" class="reference"><font size="2"><span>[</span>12<span>]</span></font></sup></font></td> </tr> <tr> <td><font color="#000000">Bacterium</font></td> <td><em><font color="#000000">Carsonella ruddii</font></em></td> <td align="right"><font color="#000000">159,662</font></td> <td>&nbsp;</td> <td><font color="#000000">Smallest non-viral genome.<sup id="cite_ref-12" class="reference"><font size="2"><span>[</span>13<span>]</span></font></sup></font></td> </tr> <tr> <td><font color="#000000">Bacterium</font></td> <td><em><font color="#000000">Buchnera aphidicola</font></em></td> <td align="right"><font color="#000000">600,000</font></td> <td>&nbsp;</td> </tr> <tr> <td><font color="#000000">Bacterium</font></td> <td><em><font color="#000000">Wigglesworthia glossinidia</font></em></td> <td align="right"><font color="#000000">700,000</font></td> <td>&nbsp;</td> </tr> <tr> <td><font color="#000000">Bacterium</font></td> <td><em><font color="#000000">Escherichia coli</font></em></td> <td align="right"><font color="#000000">4,600,000</font></td> <td>&nbsp;</td> <td><sup id="cite_ref-13" class="reference"><font size="2"><font color="#000000"><span>[</span>14<span>]</span></font></font></sup></td> </tr> <tr> <td><font color="#000000">Bacterium</font></td> <td><font color="#000000"><em>Solibacter usitatus</em> (strain Ellin 6076)</font></td> <td align="right"><font color="#000000">9,970,000</font></td> <td>&nbsp;</td> <td><font color="#000000">Largest known Bacterial genome</font></td> </tr> <tr> <td><font color="#000000">Amoeboid</font></td> <td><font color="#000000"><em>Polychaos dubium</em> (<em>&quot;Amoeba&quot; dubia</em>)</font></td> <td align="right"><font color="#000000">670,000,000,000</font></td> <td align="right"><font color="#000000">737</font></td> <td><font color="#000000">Largest known genome.<sup id="cite_ref-Parfrey2008_14-0" class="reference"><font size="2"><span>[</span>15<span>]</span></font></sup></font></td> </tr> <tr> <td><font color="#000000">Plant</font></td> <td><em><font color="#000000">Arabidopsis thaliana</font></em></td> <td align="right"><font color="#000000">157,000,000</font></td> <td>&nbsp;</td> <td><font color="#000000">First plant genome sequenced, December 2000.<sup id="cite_ref-Greilhuber_15-0" class="reference"><font size="2"><span>[</span>16<span>]</span></font></sup></font></td> </tr> <tr> <td><font color="#000000">Plant</font></td> <td><em><font color="#000000">Genlisea margaretae</font></em></td> <td align="right"><font color="#000000">63,400,000</font></td> <td>&nbsp;</td> <td><font color="#000000">Smallest recorded flowering plant genome, 2006.<sup id="cite_ref-Greilhuber_15-1" class="reference"><font size="2"><span>[</span>16<span>]</span></font></sup></font></td> </tr> <tr> <td><font color="#000000">Plant</font></td> <td><em><font color="#000000">Fritillaria assyrica</font></em></td> <td align="right"><font color="#000000">130,000,000,000</font></td> <td>&nbsp;</td> </tr> <tr> <td><font color="#000000">Plant</font></td> <td><em><font color="#000000">Populus trichocarpa</font></em></td> <td align="right"><font color="#000000">480,000,000</font></td> <td>&nbsp;</td> <td><font color="#000000">First tree genome, September 2006</font></td> </tr> <tr> <td><font color="#000000">Moss</font></td> <td><em><font color="#000000">Physcomitrella patens</font></em></td> <td align="right"><font color="#000000">480,000,000</font></td> <td>&nbsp;</td> <td><font color="#000000">First genome of a bryophyte, January 2008 <sup id="cite_ref-16" class="reference"><font size="2"><span>[</span>17<span>]</span></font></sup></font></td> </tr> <tr> <td><font color="#000000">Yeast</font></td> <td><em><font color="#000000">Saccharomyces cerevisiae</font></em></td> <td align="right"><font color="#000000">12,100,000</font></td> <td>&nbsp;</td> <td><sup id="cite_ref-17" class="reference"><font size="2"><font color="#000000"><span>[</span>18<span>]</span></font></font></sup></td> </tr> <tr> <td><font color="#000000">Fungus</font></td> <td><em><font color="#000000">Aspergillus nidulans</font></em></td> <td align="right"><font color="#000000">30,000,000</font></td> <td>&nbsp;</td> </tr> <tr> <td><font color="#000000">Nematode</font></td> <td><em><font color="#000000">Caenorhabditis elegans</font></em></td> <td align="right"><font color="#000000">100,300,000</font></td> <td>&nbsp;</td> <td><font color="#000000">First multicellular animal genome, December 1998<sup id="cite_ref-18" class="reference"><font size="2"><span>[</span>19<span>]</span></font></sup></font></td> </tr> <tr> <td><font color="#000000">Nematode</font></td> <td><em><font color="#000000">Pratylenchus coffeae</font></em></td> <td align="right"><font color="#000000">20,000,000</font></td> <td>&nbsp;</td> <td><font color="#000000">Smallest animal genome known<sup id="cite_ref-19" class="reference"><font size="2"><span>[</span>20<span>]</span></font></sup></font></td> </tr> <tr> <td><font color="#000000">Insect</font></td> <td><font color="#000000"><em>Drosophila melanogaster</em> (fruit fly)</font></td> <td align="right"><font color="#000000">130,000,000</font></td> <td>&nbsp;</td> <td><sup id="cite_ref-Adams_2000_20-0" class="reference"><font size="2"><font color="#000000"><span>[</span>21<span>]</span></font></font></sup></td> </tr> <tr> <td><font color="#000000">Insect</font></td> <td><font color="#000000"><em>Bombyx mori</em> (silk moth)</font></td> <td align="right"><font color="#000000">530,000,000</font></td> <td>&nbsp;</td> </tr> <tr> <td><font color="#000000">Insect</font></td> <td><font color="#000000"><em>Apis mellifera</em> (honey bee)</font></td> <td align="right"><font color="#000000">236,000,000</font></td> <td>&nbsp;</td> </tr> <tr> <td><font color="#000000">Fish</font></td> <td><font color="#000000"><em>Tetraodon nigroviridis</em> (type of puffer fish)</font></td> <td align="right"><font color="#000000">385,000,000</font></td> <td>&nbsp;</td> <td><font color="#000000">Smallest vertebrate genome known</font></td> </tr> <tr> <td><font color="#000000">Mammal</font></td> <td><em><font color="#000000">Homo sapiens</font></em></td> <td align="right"><font color="#000000">3,200,000,000</font></td> <td align="right"><font color="#000000">3</font></td> <td>&nbsp;</td> </tr> <tr> <td><font color="#000000">Fish</font></td> <td><font color="#000000"><em>Protopterus aethiopicus</em> (marbled lungfish)</font></td> <td align="right"><font color="#000000">130,000,000,000</font></td> <td align="right"><font color="#000000">143</font></td> <td><font color="#000000">Largest vertebrate genome known</font></td> </tr> </tbody>
</table>
</p><p><span style="font-size: small"><font color="#000000"><em>Note<p><span style="font-size:small"><em>Note:</em> The DNA from a single (diploid) human cell if the 46 chromosomes were
</ol>
</div>
 <h2><span id="Further_reading" class="mw-headline">Further reading</span></h2> 
<ul>
<li><span class="citation book">Benfey, P.; Protopapas, A.D. (2004). <em>Essentials of Genomics</em>. Prentice Hall.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Essentials+of+Genomics&amp;rft.aulast=Benfey&amp;rft.aufirst=P.&amp;rft.au=Benfey%2C%26%2332%3BP.&amp;rft.date=2004&amp;rft.pub=Prentice+Hall&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li> <li><span class="citation book">Brown, Terence A. (2002). <em>Genomes 2</em>. Oxford: Bios Scientific Publishers. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font colortitle="#0645adInternational Standard Book Number">ISBN</font></a>&nbsp;<a titlehref="/wiki/Special:BookSources/978-1859960295" hreftitle="/wiki/Special:BookSources/978-1859960295"><font color="#0645ad">978-1859960295</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Genomes+2&amp;rft.aulast=Brown&amp;rft.aufirst=Terence+A.&amp;rft.au=Brown%2C%26%2332%3BTerence+A.&amp;rft.date=2002&amp;rft.place=Oxford&amp;rft.pub=Bios+Scientific+Publishers&amp;rft.isbn=978-1859960295&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li> <li><span class="citation book">Gibson, Greg; Muse, Spencer V. (2004). <em>A Primer of Genome Science</em> (Second ed.). Sunderland, Mass: Sinauer Assoc. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font colortitle="#0645adInternational Standard Book Number">ISBN</font></a>&nbsp;<a titlehref="/wiki/Special:BookSources/0-87893-234-8" hreftitle="/wiki/Special:BookSources/0-87893-234-8"><font color="#0645ad">0-87893-234-8</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Primer+of+Genome+Science&amp;rft.aulast=Gibson&amp;rft.aufirst=Greg&amp;rft.au=Gibson%2C%26%2332%3BGreg&amp;rft.date=2004&amp;rft.edition=Second&amp;rft.place=Sunderland%2C+Mass&amp;rft.pub=Sinauer+Assoc&amp;rft.isbn=0-87893-234-8&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li> <li><span class="citation book">Gregory, T. Ryan (ed) (2005). <em><a title="The Evolution of the Genome" href="/wiki/The_Evolution_of_the_Genome"><font colortitle="#0645adThe Evolution of the Genome">The Evolution of the Genome</font></a></em>. Elsevier. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font colortitle="#0645adInternational Standard Book Number">ISBN</font></a>&nbsp;<a titlehref="/wiki/Special:BookSources/0-12-301463-8" hreftitle="/wiki/Special:BookSources/0-12-301463-8"><font color="#0645ad">0-12-301463-8</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;rft.aulast=Gregory&amp;rft.aufirst=T.+Ryan+%28ed%29&amp;rft.au=Gregory%2C%26%2332%3BT.+Ryan+%28ed%29&amp;rft.date=2005&amp;rft.pub=Elsevier&amp;rft.isbn=0-12-301463-8&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li> <li><span class="citation book">Reece, Richard J. (2004). <em>Analysis of Genes and Genomes</em>. Chichester: John Wiley &amp; Sons. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font colortitle="#0645adInternational Standard Book Number">ISBN</font></a>&nbsp;<a titlehref="/wiki/Special:BookSources/0-470-84379-9" hreftitle="/wiki/Special:BookSources/0-470-84379-9"><font color="#0645ad">0-470-84379-9</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analysis+of+Genes+and+Genomes&amp;rft.aulast=Reece&amp;rft.aufirst=Richard+J.&amp;rft.au=Reece%2C%26%2332%3BRichard+J.&amp;rft.date=2004&amp;rft.place=Chichester&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.isbn=0-470-84379-9&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li> <li><span class="citation book">Saccone, Cecilia; Pesole, Graziano (2003). <em>Handbook of Comparative Genomics</em>. Chichester: John Wiley &amp; Sons. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font colortitle="#0645adInternational Standard Book Number">ISBN</font></a>&nbsp;<a titlehref="/wiki/Special:BookSources/0-471-39128-X" hreftitle="/wiki/Special:BookSources/0-471-39128-X"><font color="#0645ad">0-471-39128-X</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Comparative+Genomics&amp;rft.aulast=Saccone&amp;rft.aufirst=Cecilia&amp;rft.au=Saccone%2C%26%2332%3BCecilia&amp;rft.date=2003&amp;rft.place=Chichester&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.isbn=0-471-39128-X&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li> <li><span class="citation Journal">Werner, E. (2003). &quot;In silico multicellular systems biology and minimal genomes&quot;. <em>Drug Discov Today</em> <strong>8</strong> (24): 1121&ndash;1127. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font colortitle="#0645adDigital object identifier">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1016%2FS1359-6446%2803%2902918-0"><font colorrel="#3366bbnofollow">10.1016/S1359-6446(03)02918-0</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font colortitle="#0645adPubMed Identifier">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/14678738"><font colorrel="#3366bbnofollow">14678738</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=In+silico+multicellular+systems+biology+and+minimal+genomes&amp;rft.jtitle=Drug+Discov+Today&amp;rft.aulast=Werner&amp;rft.aufirst=E.&amp;rft.au=Werner%2C%26%2332%3BE.&amp;rft.date=2003&amp;rft.volume=8&amp;rft.issue=24&amp;rft.pages=1121%E2%80%931127&amp;rft_id=info:doi/10.1016%2FS1359-6446%2803%2902918-0&amp;rft_id=info:pmid/14678738&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li>
</ul>
 <h2><span id="External_links" class="mw-headline">External links</span></h2> 
<ul>
<li><font color="#3366bb">[http://genomics.org Genomics.org]</font></li> <li>[http://omics.org Omics.org]</li> <li><a class="external text" rel="nofollow" href="http://learn.genetics.utah.edu/content/begin/dna/builddna/"><font colorrel="#3366bbnofollow">Build a DNA Molecule</font></a></li> <li><a class="external text" rel="nofollow" href="http://www.genomenewsnetwork.org/articles/02_01/Sizing_genomes.shtml"><font colorrel="#3366bbnofollow">Some comparative genome sizes</font></a></li> <li><a class="external text" rel="nofollow" href="http://www.dnai.org/"><font colorrel="#3366bbnofollow">DNA Interactive: The History of DNA Science</font></a></li> <li><a class="external text" rel="nofollow" href="http://www.dnaftb.org/"><font colorrel="#3366bbnofollow">DNA From The Beginning</font></a></li> <li><a class="external text" rel="nofollow" href="http://www.genome.gov/10001772"><font colorrel="#3366bbnofollow">All About The Human Genome Project from Genome.gov</font></a></li> <li><a class="external text" rel="nofollow" href="http://www.genomesize.com/"><font colorrel="#3366bbnofollow">Animal genome size database</font></a></li> <li><a class="external text" rel="nofollow" href="http://www.rbgkew.org.uk/cval/homepage.html"><font colorrel="#3366bbnofollow">Plant genome size database</font></a></li> <li><a class="external text" rel="nofollow" href="http://www.genomesonline.org/"><font colorrel="#3366bbnofollow">GOLD:Genomes OnLine Database</font></a></li> <li><a class="external text" rel="nofollow" href="http://www.genomenewsnetwork.org/"><font colorrel="#3366bbnofollow">The Genome News Network</font></a></li> <li><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj"><font colorrel="#3366bbnofollow">NCBI Entrez Genome Project database</font></a></li> <li><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/About/primer/genetics_genome.html"><font colorrel="#3366bbnofollow">NCBI Genome Primer</font></a></li> <li><a class="external text" rel="nofollow" href="http://news.bbc.co.uk/1/hi/sci/tech/4994088.stm"><font colorrel="#3366bbnofollow">BBC News - Final genome '&#39;chapter' &#39; published</font></a></li> <li><a class="external text" rel="nofollow" href="https://www.crops.org/genome/"><font colorrel="#3366bbnofollow">The Plant Genome</font></a></li> <li><a class="external text" rel="nofollow" href="http://img.jgi.doe.gov/"><font colorrel="#3366bbnofollow">IMG</font></a> The Integrated Microbial Genomes system, for genome analysis by the DOE-JGI.</li> <li><a class="external text" rel="nofollow" href="http://camera.calit2.net/index.php/"><font colorrel="#3366bbnofollow">CAMERA</font></a> Cyberinfrastructure for Metagenomics, data repository and bioinformatics tools for metagenomic research</li> <li><a class="external text" rel="nofollow" href="http://www.genecards.org/"><font colorrel="#3366bbnofollow">GeneCards</font></a> an integrated database of human genes.</li> <li><a class="external text" rel="nofollow" href="http://genome.igib.res.in/"><font colorrel="#3366bbnofollow">Genome@IGIB</font></a> Resources and News on the Zebrafish Genome Project @ IGIB.</li> <li><a class="external text" rel="nofollow" href="http://www.geknome.com"><font colorrel="#3366bbnofollow">GeKnome Technologies Next-Gen Sequencing Data Analysis</font></a> Next-Gen Sequencing Data Analysis for <a title="Illumina" href="/wiki/Illumina"><font colortitle="#0645adIllumina">Illumina</font></a> and <a title="454" href="/wiki/454"><font colortitle="#0645ad454">454</font></a> Service from GeKnome Technologies.</li> <li><a class="external text" rel="nofollow" href="http://ascb.org/ibioseminars/brenner/brenner1.cfm"><font colorrel="#3366bbnofollow">What Genomes Can Tell Us About the Past</font></a> - lecture by <a title="Sydney Brenner" href="/wiki/Sydney_Brenner"><font colortitle="#0645adSydney Brenner">Sydney Brenner</font></a></li> <li><a class="external text" rel="nofollow" href="http://www.imame.org/form/genome--mid80-frz.htm"><font colorrel="#3366bbnofollow">Genome metaphor, reflecting from formal-net hierarchies, and software binaries</font></a>.</li>
</ul>
Anonymous user

Navigation menu