Open main menu

Biolecture.org β

Changes

Genomics BIO431SB

2,985 bytes added, 21:01, 11 June 2015
no edit summary
<p>[http://biopedia.org/index.php/Genomics Genomics]</p>
<p>&nbsp;</p>
<h1><b><span style="font-size: x-large">Genomics</span></b></h1>
<p style="white-space: normal; word-spacing: 0px; text-transform: none; color: rgb(97,97,97); font: 13px/18px Verdana; widows: 1; letter-spacing: normal; background-color: rgb(255,255,255); text-indent: 0px; -webkit-text-stroke-width: 0px">The genome is the entire DNA content that is present within one cell of an organism. Experts in genomics strive to determine complete DNA sequences and perform genetic mapping to help understand disease.</p>
<p style="white-space: normal; word-spacing: 0px; text-transform: none; color: rgb(97,97,97); font: 13px/18px Verdana; widows: 1; letter-spacing: normal; background-color: rgb(255,255,255); text-indent: 0px; -webkit-text-stroke-width: 0px">Genomics also involves the study of intragenomic processes such as epistasis, heterosis and pleiotropy as well as the interactions between loci and alleles within the genome. The fields of molecular biology and genetics are mainly concerned with the study of the role and function of single genes, a major topic in today&rsquo;s biomedical research. By contrast, genomics does not involve single gene research unless the purpose is to understand a single gene&rsquo;s effects in context of the entire genome.</p>
<p style="white-space: normal; word-spacing: 0px; text-transform: none; color: rgb(97,97,97); font: 13px/18px Verdana; widows: 1; letter-spacing: normal; background-color: rgb(255,255,255); text-indent: 0px; -webkit-text-stroke-width: 0px">&nbsp;<iframe height="344" src="https://secure.footprint.net/gatorade/stg/gssiweb/videos/j-timmons-04-new-genomic-approaches.mp4" frameborder="0" width="425" scrolling="no"></iframe>&nbsp;</p>
<p style="white-space: normal; word-spacing: 0px; text-transform: none; color: rgb(97,97,97); font: 13px/18px Verdana; widows: 1; letter-spacing: normal; background-color: rgb(255,255,255); text-indent: 0px; -webkit-text-stroke-width: 0px">source : <a href="http://www.gssiweb.org/en/Video/genomics-versus-transcriptomics-to-understand-performance">http://www.gssiweb.org/en/Video/genomics-versus-transcriptomics-to-understand-performance</a></p>
<p style="white-space: normal; word-spacing: 0px; text-transform: none; color: rgb(97,97,97); font: 13px/18px Verdana; widows: 1; letter-spacing: normal; background-color: rgb(255,255,255); text-indent: 0px; -webkit-text-stroke-width: 0px">&nbsp;</p>
<h4><strong style="font-weight: 700">What is the difference between proteomics and genomics?</strong></h4>
<p style="margin-bottom: 1.1em; white-space: normal; word-spacing: 0px; text-transform: none; color: rgb(59,59,59); text-align: left; font: 13px/14px 'Trebuchet MS', Arial, Helvetica, sans-serif; widows: 1; margin-top: 0px; letter-spacing: normal; background-color: rgb(255,255,255); text-indent: 0px; -webkit-text-stroke-width: 0px"><br />
Unlike the genome, which is relatively static, the proteome changes constantly in response to tens of thousands of intra- and extracellular environmental signals. The proteome varies with health or disease, the nature of each tissue, the stage of cell development, and effects of drug treatments. As such, the proteome often is defined as &ldquo;the proteins present in one sample (tissue, organism, cell culture) at a certain point in time.&rdquo;</p>
<p style="margin-bottom: 1.1em; white-space: normal; word-spacing: 0px; text-transform: none; color: rgb(59,59,59); text-align: left; font: 13px/14px 'Trebuchet MS', Arial, Helvetica, sans-serif; widows: 1; margin-top: 0px; letter-spacing: normal; background-color: rgb(255,255,255); text-indent: 0px; -webkit-text-stroke-width: 0px">In many ways, proteomics runs parallel to genomics: Genomics starts with the gene and makes inferences about its products (proteins), whereas proteomics begins with the functionally modified protein and works back to the gene responsible for its production.</p>
<p style="margin-bottom: 1.1em; white-space: normal; word-spacing: 0px; text-transform: none; color: rgb(59,59,59); text-align: left; font: 13px/14px 'Trebuchet MS', Arial, Helvetica, sans-serif; widows: 1; margin-top: 0px; letter-spacing: normal; background-color: rgb(255,255,255); text-indent: 0px; -webkit-text-stroke-width: 0px">The sequencing of the human genome has increased interest in proteomics because while DNA sequence information provides a static snapshot of the various ways in which the cell might use its proteins, the life of the cell is a dynamic process. This new data set holds great new promise for proteomic applications in science, medicine, and most notably &ndash; pharmaceuticals.</p>
<p>&nbsp;</p>
<p style="white-space: normal; word-spacing: 0px; text-transform: none; color: rgb(97,97,97); font: 13px/18px Verdana; widows: 1; letter-spacing: normal; background-color: rgb(255,255,255); text-indent: 0px; -webkit-text-stroke-width: 0px">&nbsp;</p>
<p style="white-space: normal; word-spacing: 0px; text-transform: none; color: rgb(97,97,97); font: 13px/18px Verdana; widows: 1; letter-spacing: normal; background-color: rgb(255,255,255); text-indent: 0px; -webkit-text-stroke-width: 0px">&nbsp;</p>
<p style="white-space: normal; word-spacing: 0px; text-transform: none; color: rgb(97,97,97); font: 13px/18px Verdana; widows: 1; letter-spacing: normal; background-color: rgb(255,255,255); text-indent: 0px; -webkit-text-stroke-width: 0px">&nbsp;</p>
<h1>&nbsp;&nbsp;</h1>