Difference between revisions of "Summary class Geromics 2024 HyoungJinChoi"
Line 109: | Line 109: | ||
Full text link : [https://en.wikipedia.org/wiki/Expression_quantitative_trait_loci https://en.wikipedia.org/wiki/Expression_quantitative_trait_loci]<br/> | Full text link : [https://en.wikipedia.org/wiki/Expression_quantitative_trait_loci https://en.wikipedia.org/wiki/Expression_quantitative_trait_loci]<br/> | ||
+ | |||
== 2024.04.12 == | == 2024.04.12 == | ||
− | |||
=== Proteomics === | === Proteomics === | ||
Line 121: | Line 121: | ||
Proteomics is an interdisciplinary domain that has benefited greatly from the genetic information of various genome projects, including the [https://en.wikipedia.org/wiki/Human_Genome_Project Human Genome Project].<sup id="cite_ref-4">[https://en.wikipedia.org/wiki/Proteomics#cite_note-4 [4]]</sup> It covers the exploration of proteomes from the overall level of protein composition, structure, and activity, and is an important component of [https://en.wikipedia.org/wiki/Functional_genomics functional genomics]. | Proteomics is an interdisciplinary domain that has benefited greatly from the genetic information of various genome projects, including the [https://en.wikipedia.org/wiki/Human_Genome_Project Human Genome Project].<sup id="cite_ref-4">[https://en.wikipedia.org/wiki/Proteomics#cite_note-4 [4]]</sup> It covers the exploration of proteomes from the overall level of protein composition, structure, and activity, and is an important component of [https://en.wikipedia.org/wiki/Functional_genomics functional genomics]. | ||
− | ''Proteomics'' generally denotes the large-scale experimental analysis of proteins and proteomes, but often refers specifically to [https://en.wikipedia.org/wiki/Protein_purification protein purification] and [https://en.wikipedia.org/wiki/Mass_spectrometry mass spectrometry]. Indeed, mass spectrometry is the most powerful method for analysis of proteomes, both in large samples composed of millions of cells<sup id="cite_ref-5">[https://en.wikipedia.org/wiki/Proteomics#cite_note-5 [5]]</sup> and in single cells.<sup id="cite_ref-6">[https://en.wikipedia.org/wiki/Proteomics#cite_note-6 [6]]</sup><sup id="cite_ref-7">[https://en.wikipedia.org/wiki/Proteomics#cite_note-7 [7]]</sup><br/> <br/> | + | ''Proteomics'' generally denotes the large-scale experimental analysis of proteins and proteomes, but often refers specifically to [https://en.wikipedia.org/wiki/Protein_purification protein purification] and [https://en.wikipedia.org/wiki/Mass_spectrometry mass spectrometry]. Indeed, mass spectrometry is the most powerful method for analysis of proteomes, both in large samples composed of millions of cells<sup id="cite_ref-5">[https://en.wikipedia.org/wiki/Proteomics#cite_note-5 [5]]</sup> and in single cells.<sup id="cite_ref-6">[https://en.wikipedia.org/wiki/Proteomics#cite_note-6 [6]]</sup><sup id="cite_ref-7">[https://en.wikipedia.org/wiki/Proteomics#cite_note-7 [7]]</sup><br/> <br/> Full text link : [https://en.wikipedia.org/wiki/Proteomics https://en.wikipedia.org/wiki/Proteomics] |
+ | |||
+ | === Omics === | ||
+ | |||
+ | The branches of [https://en.wikipedia.org/wiki/Science science] known informally as '''omics''' are various disciplines in [https://en.wikipedia.org/wiki/Biology biology] whose names end in the suffix ''[https://en.wiktionary.org/wiki/-omics -omics]'', such as [https://en.wikipedia.org/wiki/Genomics genomics], [https://en.wikipedia.org/wiki/Proteomics proteomics], [https://en.wikipedia.org/wiki/Metabolomics metabolomics], [https://en.wikipedia.org/wiki/Metagenomics metagenomics], [https://en.wikipedia.org/wiki/Phenomics phenomics] and [https://en.wikipedia.org/wiki/Transcriptomics transcriptomics]. Omics aims at the collective characterization and quantification of pools of biological molecules that translate into the structure, function, and dynamics of an organism or organisms.<sup id="cite_ref-1">[https://en.wikipedia.org/wiki/Omics#cite_note-1 [1]]</sup> | ||
+ | |||
+ | The related suffix '''-ome''' is used to address the objects of study of such fields, such as the [https://en.wikipedia.org/wiki/Genome genome], [https://en.wikipedia.org/wiki/Proteome proteome] or [https://en.wikipedia.org/wiki/Metabolome metabolome] respectively. The suffix ''-ome'' as used in molecular biology refers to a ''totality'' of some sort; it is an example of a "neo-suffix" formed by abstraction from various Greek terms in -ωμα, a sequence that does not form an identifiable suffix in Greek. | ||
+ | |||
+ | [https://en.wikipedia.org/wiki/Functional_genomics Functional genomics] aims at identifying the functions of as many genes as possible of a given organism. It combines different -omics techniques such as transcriptomics and proteomics with saturated mutant collections.<sup id="cite_ref-2">[https://en.wikipedia.org/wiki/Omics#cite_note-2 [2]]</sup><br/> <br/> Full text link : [https://en.wikipedia.org/wiki/Omics https://en.wikipedia.org/wiki/Omics] | ||
− | + | <br/> <br/> <br/> <br/> <br/> <br/> [https://biolecture.org/Main_Page Main Page] » [https://biolecture.org/UNIST_Geromics_course UNIST Geromics course] » [https://biolecture.org/Geromics_Course_Students_Folder_2024 Geromics Course Students Folder 2024] » [https://biolecture.org/HyoungJinChoi_2024_Geromics_Course HyoungJinChoi 2024 Geromics Course] » [https://biolecture.org/Summary_class_Geromics_2024_HyoungJinChoi Summary class Geromics 2024 HyoungJinCho] |
Revision as of 18:54, 14 April 2024
Main Page » UNIST Geromics course » Geromics Course Students Folder 2024 » HyoungJinChoi 2024 Geromics Course » Summary class Geromics 2024 HyoungJinCho
Contents
2024.03.06
orientation Geromics
2024.03.08
What is theory?
A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory's assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings.
In modern science, the term "theory" refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction ("falsify") of it. Scientific theories are the most reliable, rigorous, and comprehensive form of scientific knowledge,[1] in contrast to more common uses of the word "theory" that imply that something is unproven or speculative (which in formal terms is better characterized by the word hypothesis).[2] Scientific theories are distinguished from hypotheses, which are individual empirically testable conjectures, and from scientific laws, which are descriptive accounts of the way nature behaves under certain conditions.
Theories guide the enterprise of finding facts rather than of reaching goals, and are neutral concerning alternatives among values.[3]: 131 A theory can be a body of knowledge, which may or may not be associated with particular explanatory models. To theorize is to develop this body of knowledge.[4]: 46
The word theory or "in theory" is sometimes used outside of science to refer to something which the speaker did not experience or test before.[5] In science, this same concept is referred to as a hypothesis, and the word "hypothetically" is used both inside and outside of science. In its usage outside of science, the word "theory" is very often contrasted to "practice" (from Greek praxis, πρᾶξις) a Greek term for doing, which is opposed to theory.[6] A "classical example" of the distinction between "theoretical" and "practical" uses the discipline of medicine: medical theory involves trying to understand the causes and nature of health and sickness, while the practical side of medicine is trying to make people healthy. These two things are related but can be independent, because it is possible to research health and sickness without curing specific patients, and it is possible to cure a patient without knowing how the cure worked.[a]
full text link : https://en.wikipedia.org/wiki/Theory
2024.03.22
--
Prepare class Before you attend this week's lecture, I would like to encourage you to watch the following YouTube video:
- Title: Mitochondrial Regulation of Stem Cell Aging
- Presenter: Danica Chen, PhD (University of California, Berkeley, USA)
- YouTube Link: https://www.youtube.com/watch?v=FoJWmaT1ptM
In this video, Professor Danica Chen discusses various methods to protect mitochondria and reverse stem cell aging by Sirtuins.
It's an insightful presentation that will undoubtedly enrich our understanding of the topic before our lecture.
--
Mitochondrial Stress is a Driver of Stem Cell Aging
- Mitochondrial stress increases in stem cell during aging
- Mitochondrial dysfunction and aging produces similar defects in stem cells
- Stem cells do not age at the same rate; about one third od chronologically aged HSCs exhibit regeberative function similar to healthy young HSCs, coinciding with the health of mitochondria.
Stem cell
In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can change into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage.[1] They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.
In mammals, roughly 50 to 150 cells make up the inner cell mass during the blastocyst stage of embryonic development, around days 5–14. These have stem-cell capability. In vivo, they eventually differentiate into all of the body's cell types (making them pluripotent). This process starts with the differentiation into the three germ layers – the ectoderm, mesoderm and endoderm – at the gastrulation stage. However, when they are isolated and cultured in vitro, they can be kept in the stem-cell stage and are known as embryonic stem cells (ESCs).
Adult stem cells are found in a few select locations in the body, known as niches, such as those in the bone marrow or gonads. They exist to replenish rapidly lost cell types and are multipotent or unipotent, meaning they only differentiate into a few cell types or one type of cell. In mammals, they include, among others, hematopoietic stem cells, which replenish blood and immune cells, basal cells, which maintain the skin epithelium, and mesenchymal stem cells, which maintain bone, cartilage, muscle and fat cells. Adult stem cells are a small minority of cells; they are vastly outnumbered by the progenitor cells and terminally differentiated cells that they differentiate into.[1]
Research into stem cells grew out of findings by Canadian biologists Ernest McCulloch, James Till and Andrew J. Becker at the University of Toronto and the Ontario Cancer Institute in the 1960s.[2][3] As of 2016, the only established medical therapy using stem cells is hematopoietic stem cell transplantation,[4] first performed in 1958 by French oncologist Georges Mathé. Since 1998 however, it has been possible to culture and differentiate human embryonic stem cells (in stem-cell lines). The process of isolating these cells has been controversial, because it typically results in the destruction of the embryo. Sources for isolating ESCs have been restricted in some European countries and Canada, but others such as the UK and China have promoted the research.[5] Somatic cell nuclear transfer is a cloning method that can be used to create a cloned embryo for the use of its embryonic stem cells in stem cell therapy.[6] In 2006, a Japanese team led by Shinya Yamanaka discovered a method to convert mature body cells back into stem cells. These were termed induced pluripotent stem cells (iPSCs).[7]
full txt link : https://en.wikipedia.org/wiki/Stem_cell
How does the total amount of stem cells in humans change over time?
At what age does it reach its maximum and minimum?
When fertilization occurs, one: start life, two 120 years.
When certain data points are plotted, it seems feasible to converge through statistical methods (considering the number of inflection points).
Are there any papers related to the number of stem cells at various ages in a particular sample?
> No results found in the initial search. (Only use 14 min)
2024.03.29
Occupations with high life expectancy ?
full txt link : https://www.hani.co.kr/arti/society/rights/471412.html
2024.04.05
DNA
Deoxyribonucleic acid (/diːˈɒksɪˌraɪboʊnjuːˌkliːɪk, -ˌkleɪ-/ ⓘ;[1] DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.
The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides.[2][3] Each nucleotide is composed of one of four nitrogen-containing nucleobases (cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar called deoxyribose, and a phosphate group. The nucleotides are joined to one another in a chain by covalent bonds (known as the phosphodiester linkage) between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone. The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded DNA. The complementary nitrogenous bases are divided into two groups, the single-ringed pyrimidines and the double-ringed purines. In DNA, the pyrimidines are thymine and cytosine; the purines are adenine and guanine.
Both strands of double-stranded DNA store the same biological information. This information is replicated when the two strands separate. A large part of DNA (more than 98% for humans) is non-coding, meaning that these sections do not serve as patterns for protein sequences. The two strands of DNA run in opposite directions to each other and are thus antiparallel. Attached to each sugar is one of four types of nucleobases (or bases). It is the sequence of these four nucleobases along the backbone that encodes genetic information. RNA strands are created using DNA strands as a template in a process called transcription, where DNA bases are exchanged for their corresponding bases except in the case of thymine (T), for which RNA substitutes uracil (U).[4] Under the genetic code, these RNA strands specify the sequence of amino acids within proteins in a process called translation.
Within eukaryotic cells, DNA is organized into long structures called chromosomes. Before typical cell division, these chromosomes are duplicated in the process of DNA replication, providing a complete set of chromosomes for each daughter cell. Eukaryotic organisms (animals, plants, fungi and protists) store most of their DNA inside the cell nucleus as nuclear DNA, and some in the mitochondria as mitochondrial DNA or in chloroplasts as chloroplast DNA.[5] In contrast, prokaryotes (bacteria and archaea) store their DNA only in the cytoplasm, in circular chromosomes. Within eukaryotic chromosomes, chromatin proteins, such as histones, compact and organize DNA. These compacting structures guide the interactions between DNA and other proteins, helping control which parts of the DNA are transcribed.
full text link : https://en.wikipedia.org/wiki/DNA
RNA
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyribonucleic acid (DNA) are nucleic acids. The nucleic acids constitute one of the four major macromolecules essential for all known forms of life. RNA is assembled as a chain of nucleotides. Cellular organisms use messenger RNA (mRNA) to convey genetic information (using the nitrogenous bases of guanine, uracil, adenine, and cytosine, denoted by the letters G, U, A, and C) that directs synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome.
Some RNA molecules play an active role within cells by catalyzing biological reactions, controlling gene expression, or sensing and communicating responses to cellular signals. One of these active processes is protein synthesis, a universal function in which RNA molecules direct the synthesis of proteins on ribosomes. This process uses transfer RNA (tRNA) molecules to deliver amino acids to the ribosome, where ribosomal RNA (rRNA) then links amino acids together to form coded proteins.
It has become widely accepted in science[1] that early in the history of life on Earth, prior to the evolution of DNA and possibly of protein-based enzymes as well, an "RNA world" existed in which RNA served as both living organisms' storage method for genetic information—a role fulfilled today by DNA, except in the case of RNA viruses—and potentially performed catalytic functions in cells—a function performed today by protein enzymes, with the notable and important exception of the ribosome, which is a ribozyme.
Full text link : https://en.wikipedia.org/wiki/RNA
eQTL
Distant and local, trans- and cis-eQTLs, respectively
An expression quantitative trait is an amount of an mRNA transcript or a protein. These are usually the product of a single gene with a specific chromosomal location. This distinguishes expression quantitative traits from most complex traits, which are not the product of the expression of a single gene. Chromosomal loci that explain variance in expression traits are called eQTLs. eQTLs located near the gene-of-origin (gene which produces the transcript or protein) are referred to as local eQTLs or cis-eQTLs. By contrast, those located distant from their gene of origin, often on different chromosomes, are referred to as distant eQTLs or trans-eQTLs.[3] [4] The first genome-wide study of gene expression was carried out in yeast and published in 2002.[5] The initial wave of eQTL studies employed microarrays to measure genome-wide gene expression; more recent studies have employed massively parallel RNA sequencing. Many expression QTL studies were performed in plants and animals, including humans,[6] non-human primates[7][8] and mice.[9]
Some cis eQTLs are detected in many tissue types but the majority of trans eQTLs are tissue-dependent (dynamic).[10] eQTLs may act in cis (locally) or trans (at a distance) to a gene.[11] The abundance of a gene transcript is directly modified by polymorphism in regulatory elements. Consequently, transcript abundance might be considered as a quantitative trait that can be mapped with considerable power. These have been named expression QTLs (eQTLs).[12] The combination of whole-genome genetic association studies and the measurement of global gene expression allows the systematic identification of eQTLs. By assaying gene expression and genetic variation simultaneously on a genome-wide basis in a large number of individuals, statistical genetic methods can be used to map the genetic factors that underpin individual differences in quantitative levels of expression of many thousands of transcripts.[13] Studies have shown that single nucleotide polymorphisms (SNPs) reproducibly associated with complex disorders [14] as well as certain pharmacologic phenotypes [15] are found to be significantly enriched for eQTLs, relative to frequency-matched control SNPs. The integration of eQTLs with GWAS has led to development of the transcriptome-wide association study (TWAS) methodology.[16][17]
Detecting eQTLs
Mapping eQTLs is done using standard QTL mapping methods that test the linkage between variation in expression and genetic polymorphisms. The only considerable difference is that eQTL studies can involve a million or more expression microtraits. Standard gene mapping software packages can be used, although it is often faster to use custom code such as QTL Reaper or the web-based eQTL mapping system GeneNetwork. GeneNetwork hosts many large eQTL mapping data sets and provide access to fast algorithms to map single loci and epistatic interactions. As is true in all QTL mapping studies, the final steps in defining DNA variants that cause variation in traits are usually difficult and require a second round of experimentation. This is especially the case for trans eQTLs that do not benefit from the strong prior probability that relevant variants are in the immediate vicinity of the parent gene. Statistical, graphical, and bioinformatic methods are used to evaluate positional candidate genes and entire systems of interactions.[18][19] The development of single cell technologies, and parallel advances in statistical methods has made it possible to define even subtle changes in eQTLs as cell-states change.[20][21]
Full text link : https://en.wikipedia.org/wiki/Expression_quantitative_trait_loci
2024.04.12
Proteomics
Proteomics is the large-scale study of proteins.[1][2] Proteins are vital parts of living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. In addition, other kinds of proteins include antibodies that protect an organism from infection, and hormones that send important signals throughout the body.
The proteome is the entire set of proteins produced or modified by an organism or system. Proteomics enables the identification of ever-increasing numbers of proteins. This varies with time and distinct requirements, or stresses, that a cell or organism undergoes.[3]
Proteomics is an interdisciplinary domain that has benefited greatly from the genetic information of various genome projects, including the Human Genome Project.[4] It covers the exploration of proteomes from the overall level of protein composition, structure, and activity, and is an important component of functional genomics.
Proteomics generally denotes the large-scale experimental analysis of proteins and proteomes, but often refers specifically to protein purification and mass spectrometry. Indeed, mass spectrometry is the most powerful method for analysis of proteomes, both in large samples composed of millions of cells[5] and in single cells.[6][7]
Full text link : https://en.wikipedia.org/wiki/Proteomics
Omics
The branches of science known informally as omics are various disciplines in biology whose names end in the suffix -omics, such as genomics, proteomics, metabolomics, metagenomics, phenomics and transcriptomics. Omics aims at the collective characterization and quantification of pools of biological molecules that translate into the structure, function, and dynamics of an organism or organisms.[1]
The related suffix -ome is used to address the objects of study of such fields, such as the genome, proteome or metabolome respectively. The suffix -ome as used in molecular biology refers to a totality of some sort; it is an example of a "neo-suffix" formed by abstraction from various Greek terms in -ωμα, a sequence that does not form an identifiable suffix in Greek.
Functional genomics aims at identifying the functions of as many genes as possible of a given organism. It combines different -omics techniques such as transcriptomics and proteomics with saturated mutant collections.[2]
Full text link : https://en.wikipedia.org/wiki/Omics
Main Page » UNIST Geromics course » Geromics Course Students Folder 2024 » HyoungJinChoi 2024 Geromics Course » Summary class Geromics 2024 HyoungJinCho