Difference between revisions of "5/20 ask"

From Biolecture.org
imported>S
(Created page with "<p>실험의 목적 : 데이터 수집<br /> 최종 목적 : 생물 시스템 이해<br /> y2h<br /> scale free network ; 효율 vs 위험(one to one, one to many)</p> <p>archit...")
 
imported>S
 
Line 1: Line 1:
<p>실험의 목적 : 데이터 수집<br />
+
<p>Bioprogramming</p>
최종 목적 : 생물 시스템 이해<br />
 
y2h<br />
 
scale free network ; 효율 vs 위험(one to one, one to many)</p>
 
  
<p>architecture (network) : data=&gt;interaction</p>
+
<p>why do we programming : to simulate (programming(architect) &lt;=&gt; coding(writing))</p>
  
<p>metabolome!!!</p>
+
<p>why do we do experiments : to collect the data</p>
  
<p>to understand the network = put it in computer and simulate</p>
+
<p>&nbsp;-&nbsp;IP,Y2H -&gt; experimental tech to study interaction</p>
  
<p>modeling = we can simplify and make the relationship clear. but careful not to lose too many data</p>
+
<p>Final goal : understanding the biological system</p>
  
<p><br />
+
<p>&nbsp;- architecture (network) : data=&gt;node &amp; interaction</p>
HW define 20 words in my life</p>
 
  
<p>programming(architect) coding(writing)</p>
+
<p>&nbsp;-&nbsp;modeling = we can simplify and make the relationship clear by modeling the system. but careful not to lose too many data.</p>
 +
 
 +
<p>&nbsp;- scale free network : 효율 vs 위험(one to one, one to many)</p>
 +
 
 +
<p>(A&nbsp;<strong>scale-free network</strong>&nbsp;is a&nbsp;<a href="https://en.wikipedia.org/wiki/Complex_network" title="Complex network">network</a>&nbsp;whose&nbsp;<a href="https://en.wikipedia.org/wiki/Degree_distribution" title="Degree distribution">degree distribution</a>&nbsp;follows a&nbsp;<a href="https://en.wikipedia.org/wiki/Power_law" title="Power law">power law</a>, at least asymptotically. That is, the fraction&nbsp;<em>P</em>(<em>k</em>) of nodes in the network having&nbsp;<em>k</em>&nbsp;connections to other nodes goes for large values of&nbsp;<em>k</em>&nbsp;as</p>
 +
 
 +
<p><img alt="
 +
P(k) \ \sim \ k^\boldsymbol{-\gamma}
 +
" src="https://upload.wikimedia.org/math/f/7/9/f793f6d9a7fa1c45426ae53113c4c15e.png" /></p>
 +
 
 +
<p>where&nbsp;<img alt="\gamma" src="https://upload.wikimedia.org/math/3/3/4/334de1ea38b615839e4ee6b65ee1b103.png" />&nbsp;is a parameter whose value is typically in the range 2 &lt;&nbsp;<img alt="\gamma" src="https://upload.wikimedia.org/math/3/3/4/334de1ea38b615839e4ee6b65ee1b103.png" />&nbsp;&lt; 3, although occasionally it may lie outside these bounds.<span style="font-size:10.8333px; line-height:17.3333px">&nbsp;from wiki)</span></p>

Latest revision as of 00:19, 30 May 2016

Bioprogramming

why do we programming : to simulate (programming(architect) <=> coding(writing))

why do we do experiments : to collect the data

 - IP,Y2H -> experimental tech to study interaction

Final goal : understanding the biological system

 - architecture (network) : data=>node & interaction

 - modeling = we can simplify and make the relationship clear by modeling the system. but careful not to lose too many data.

 - scale free network : 효율 vs 위험(one to one, one to many)

(A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as

P(k) \ \sim \ k^\boldsymbol{-\gamma}

where \gamma is a parameter whose value is typically in the range 2 < \gamma < 3, although occasionally it may lie outside these bounds. from wiki)