Difference between revisions of "Epigenomics"

From Biolecture.org
imported>S
(Created page with "<p>Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell, known as the epigenome. The field is analogous ...")
(No difference)

Revision as of 21:22, 26 November 2016

Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell, known as the epigenome. The field is analogous to genomics and proteomics, which are the study of the genome and proteome of a cell. Epigenetic modifications are reversible modifications on a cell’s DNA or histones that affect gene expression without altering the DNA sequence. Epigenomic maintenance is a continuous process and plays an important role in stability of eukaryotic genomes by taking part in crucial biological mechanisms like DNA repair. Two of the most characterized epigenetic modifications are DNA methylation and histone modification. Epigenetic modifications play an important role in gene expression and regulation, and are involved in numerous cellular processes such as in differentiation/development and tumorigenesis

-DNA metylation : CpG island, 5mC adjacent to G(CpG dinucleotides. by DNA methyltransferase. DNA methylation is stable and heritable  <-> DNA de-methylases.

-histone modification : The basic and repeating units of chromatin, nucleosomes, consist of an octamer of histone proteins (H2A, H2B, H3 and H4) and a 146 bp length of DNA wrapped around it. Chromatin remodeling occurs via post-translational modifications of the N-terminal tails of core histone proteins (Russell 2010 p. 529-30). The collective set of histone modifications in a given cell is known as the histone code. Many different types of histone modification are known, including: acetylation, methylation, phosphorylation, ubiquitination, SUMOylation, ADP-ribosylation, deamination and proline isomerization; acetylation, methylation, phosphorylation and ubiquitination have been implicated in gene activation whereas methylation, ubiquitination, SUMOylation, deamination and proline isomerization have been implicated in gene repression.

 

https://en.wikipedia.org/wiki/Epigenomics