Changes
From Biolecture.org
no edit summary
<p>In a biological context, ROS are formed as a natural byproduct of the normal metabolism of <a href="https://en.wikipedia.org/wiki/Oxygen" title="Oxygen">oxygen</a> and have important roles in <a href="https://en.wikipedia.org/wiki/Cell_signaling" title="Cell signaling">cell signaling</a> and <a href="https://en.wikipedia.org/wiki/Homeostasis" title="Homeostasis">homeostasis</a>.<sup><a href="https://en.wikipedia.org/wiki/Reactive_oxygen_species#cite_note-Devasagayam_2004_796-3">[3]</a></sup> However, during times of environmental stress (e.g., <a href="https://en.wikipedia.org/wiki/Ultraviolet_light" title="Ultraviolet light">UV</a> or heat exposure), ROS levels can increase dramatically.<sup><a href="https://en.wikipedia.org/wiki/Reactive_oxygen_species#cite_note-Devasagayam_2004_796-3">[3]</a></sup> This may result in significant damage to cell structures. Cumulatively, this is known as <a href="https://en.wikipedia.org/wiki/Oxidative_stress" title="Oxidative stress">oxidative stress</a>. The production of ROS is strongly influenced by stress factor responses in plants, these factors that increase ROS production include, drought, salinity, chilling, nutrient deficiency, metal toxicity and UV-B radiation. ROS are also generated by exogenous sources such as <a href="https://en.wikipedia.org/wiki/Ionizing_radiation" title="Ionizing radiation">ionizing radiation</a>.<sup><a href="https://en.wikipedia.org/wiki/Reactive_oxygen_species#cite_note-4">[4]</a></sup></p>
<h2p>----------------------------------------------------------------------------------------------------------------------------------------------------------------------- </h2p>
<h2>Formation and decomposition</h2>
<p>Singlet oxygen is highly reactive, especially with organic compounds that contain double bonds. The resulting damage caused by singlet oxygen reduces the photosynthetic efficiency of <a href="https://en.wikipedia.org/wiki/Chloroplast" title="Chloroplast">chloroplasts</a>. In plants exposed to excess light, the increased production of singlet oxygen can result in cell death.<sup><a href="https://en.wikipedia.org/wiki/Reactive_oxygen_species#cite_note-Laloi_2015-11">[11]</a></sup> Various substances such as <a href="https://en.wikipedia.org/wiki/Carotenoid" title="Carotenoid">carotenoids</a>, <a href="https://en.wikipedia.org/wiki/Tocopherol" title="Tocopherol">tocopherols</a> and <a href="https://en.wikipedia.org/wiki/Plastoquinone" title="Plastoquinone">plastoquinones</a> contained in chloroplasts quench singlet oxygen and protect against its toxic effects. In addition to direct toxicity, singlet oxygen acts a <a href="https://en.wikipedia.org/wiki/Signal_transduction" title="Signal transduction">signaling</a> molecule.<sup><a href="https://en.wikipedia.org/wiki/Reactive_oxygen_species#cite_note-Laloi_2015-11">[11]</a></sup> Oxidized products of <a href="https://en.wikipedia.org/wiki/%CE%92-carotene" title="Β-carotene">β-carotene</a> arising from the presence of singlet oxygen act as <a href="https://en.wikipedia.org/wiki/Second_messenger_system" title="Second messenger system">second messengers</a> that can either protect against singlet oxygen induced toxicity or initiate programmed cell death. Levels of <a href="https://en.wikipedia.org/wiki/Jasmonate" title="Jasmonate">jasmonate</a> play a key role in the decision between cell acclimation or cell death in response to elevated levels of this reactive oxygen species.<sup><a href="https://en.wikipedia.org/wiki/Reactive_oxygen_species#cite_note-Laloi_2015-11">[11]</a></sup></p>
<h2p>----------------------------------------------------------------------------------------------------------------------------------------------------------------------- </h2p>
<h2>Damaging effects</h2>