Difference between revisions of "What is proteome?"

From Biolecture.org
imported>S
(Created page with "<p>Youngjun Bhak</p> <h1 lang="en" id="firstHeading" class="firstHeading">Proteomics</h1> <div id="bodyContent" class="mw-body-content"> <div id="siteSub">From Wikipedia, the...")
 
imported>S
 
Line 1: Line 1:
 
<p>[[Youngjun Bhak]]</p>
 
<p>[[Youngjun Bhak]]</p>
<h1 lang="en" id="firstHeading" class="firstHeading">Proteomics</h1>
+
<h1 lang="en" id="firstHeading" class="firstHeading">Proteome</h1>
 
<div id="bodyContent" class="mw-body-content">
 
<div id="bodyContent" class="mw-body-content">
 
<div id="siteSub">From Wikipedia, the free encyclopedia</div>
 
<div id="siteSub">From Wikipedia, the free encyclopedia</div>
 
<div id="contentSub">&nbsp;</div>
 
<div id="contentSub">&nbsp;</div>
<div id="jump-to-nav" class="mw-jump">Jump to: <a href="http://en.wikipedia.org/wiki/Proteomics#mw-head">navigation</a>, <a href="http://en.wikipedia.org/wiki/Proteomics#p-search">search</a></div>
+
<div id="jump-to-nav" class="mw-jump">Jump to: <a href="http://en.wikipedia.org/wiki/Proteome#mw-head">navigation</a>, <a href="http://en.wikipedia.org/wiki/Proteome#p-search">search</a></div>
 
<div lang="en" id="mw-content-text" class="mw-content-ltr" dir="ltr">
 
<div lang="en" id="mw-content-text" class="mw-content-ltr" dir="ltr">
<div class="hatnote">For the journal Proteomics, see <a title="Proteomics (journal)" href="http://en.wikipedia.org/wiki/Proteomics_(journal)">Proteomics (journal)</a>.</div>
+
<p>The <b>proteome</b> is the entire set of <a title="Protein" href="http://en.wikipedia.org/wiki/Protein">proteins</a> expressed by a <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a>, cell, tissue or organism at a certain time. More specifically, it is the set of expressed proteins in a given type of cell or organism, at a given time, under defined conditions. The term is a blend of <i>proteins</i> and <i>genome</i>. <a title="Proteomics" href="http://en.wikipedia.org/wiki/Proteomics">Proteomics</a> is the study of the proteome.</p>
<div class="thumb tright">
 
<div class="thumbinner" style="width: 302px"><a class="image" href="http://en.wikipedia.org/wiki/File:Protein_pattern_analyzer.jpg"><img class="thumbimage" alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Protein_pattern_analyzer.jpg/300px-Protein_pattern_analyzer.jpg" width="300" height="225" data-file-width="1024" data-file-height="768" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Protein_pattern_analyzer.jpg/450px-Protein_pattern_analyzer.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Protein_pattern_analyzer.jpg/600px-Protein_pattern_analyzer.jpg 2x" /></a>
 
<div class="thumbcaption">
 
<div class="magnify">&nbsp;</div>
 
Robotic preparation of <a title="MALDI" class="mw-redirect" href="http://en.wikipedia.org/wiki/MALDI">MALDI</a> <a title="Mass spectrometry" href="http://en.wikipedia.org/wiki/Mass_spectrometry">mass spectrometry</a> samples on a sample carrier.</div>
 
</div>
 
</div>
 
<p><b>Proteomics</b> is the large-scale study of <a title="Protein" href="http://en.wikipedia.org/wiki/Protein">proteins</a>, particularly their <a title="Protein structure" href="http://en.wikipedia.org/wiki/Protein_structure">structures</a> and <a title="Functional genomics" href="http://en.wikipedia.org/wiki/Functional_genomics">functions</a>.<sup id="cite_ref-pmid9740045_1-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-pmid9740045-1"><span>[</span>1<span>]</span></a></sup><sup id="cite_ref-pmid10189717_2-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-pmid10189717-2"><span>[</span>2<span>]</span></a></sup> Proteins are vital parts of living organisms, as they are the main components of the physiological <a title="Metabolic pathways" class="mw-redirect" href="http://en.wikipedia.org/wiki/Metabolic_pathways">metabolic pathways</a> of <a title="Biological cell" class="mw-redirect" href="http://en.wikipedia.org/wiki/Biological_cell">cells</a>. The term <i>proteomics</i> was first coined in 1997<sup id="cite_ref-3" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-3"><span>[</span>3<span>]</span></a></sup> to make an analogy with <a title="Genomics" href="http://en.wikipedia.org/wiki/Genomics">genomics</a>, the study of the <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a>. The word <i>proteome</i> is a <a title="Portmanteau" href="http://en.wikipedia.org/wiki/Portmanteau">portmanteau</a> of <i>prote</i>in and gen<i>ome</i>, and was coined by <a title="Marc Wilkins (geneticist)" href="http://en.wikipedia.org/wiki/Marc_Wilkins_(geneticist)">Marc Wilkins</a> in 1994 while working on the concept as a PhD student.<sup id="cite_ref-wilkins1996_4-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-wilkins1996-4"><span>[</span>4<span>]</span></a></sup><sup id="cite_ref-5" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-5"><span>[</span>5<span>]</span></a></sup></p>
 
<p>The <a title="Proteome" href="http://en.wikipedia.org/wiki/Proteome">proteome</a> is the entire set of proteins,<sup id="cite_ref-wilkins1996_4-1" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-wilkins1996-4"><span>[</span>4<span>]</span></a></sup> produced or modified by an organism or system. This varies with time and distinct requirements, or stresses, that a cell or organism undergoes. Proteomics is an interdisciplinary domain formed on the basis of the research and development of the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project">Human Genome Project</a>;<sup class="noprint Inline-Template Template-Fact" style="white-space: nowrap">[<i><a title="Wikipedia:Citation needed" href="http://en.wikipedia.org/wiki/Wikipedia:Citation_needed"><span title="This claim needs references to reliable sources. (October 2013)">citation needed</span></a></i>]</sup> it is also emerging scientific research and exploration of proteomes from the overall level of intracellular protein composition, structure, and its own unique activity patterns. It is an important component of functional genomics.</p>
 
<p>While <i>proteomics</i> generally refers to the large-scale experimental analysis of proteins, it is often specifically used for protein purification and mass spectrometry.</p>
 
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
 
<div id="toc" class="toc">
 
<div id="toc" class="toc">
 
<div id="toctitle">
 
<div id="toctitle">
 
<h2>Contents</h2>
 
<h2>Contents</h2>
<span class="toctoggle">&nbsp;[<a id="togglelink" href="http://en.wikipedia.org/wiki/Proteomics#">hide</a>]&nbsp;</span></div>
+
<span class="toctoggle">&nbsp;[<a id="togglelink" href="http://en.wikipedia.org/wiki/Proteome#">hide</a>]&nbsp;</span></div>
 
<ul>
 
<ul>
     <li class="toclevel-1 tocsection-1"><a href="http://en.wikipedia.org/wiki/Proteomics#Complexity_of_the_problem"><span class="tocnumber">1</span> <span class="toctext">Complexity of the problem</span></a>
+
     <li class="toclevel-1 tocsection-1"><a href="http://en.wikipedia.org/wiki/Proteome#Systems"><span class="tocnumber">1</span> <span class="toctext">Systems</span></a></li>
    <ul>
+
    <li class="toclevel-1 tocsection-2"><a href="http://en.wikipedia.org/wiki/Proteome#History"><span class="tocnumber">2</span> <span class="toctext">History</span></a></li>
        <li class="toclevel-2 tocsection-2"><a href="http://en.wikipedia.org/wiki/Proteomics#Post-translational_modifications"><span class="tocnumber">1.1</span> <span class="toctext">Post-translational modifications</span></a>
+
     <li class="toclevel-1 tocsection-3"><a href="http://en.wikipedia.org/wiki/Proteome#Size_and_contents"><span class="tocnumber">3</span> <span class="toctext">Size and contents</span></a></li>
        <ul>
+
     <li class="toclevel-1 tocsection-4"><a href="http://en.wikipedia.org/wiki/Proteome#Studying_the_proteome"><span class="tocnumber">4</span> <span class="toctext">Studying the proteome</span></a></li>
            <li class="toclevel-3 tocsection-3"><a href="http://en.wikipedia.org/wiki/Proteomics#Phosphorylation"><span class="tocnumber">1.1.1</span> <span class="toctext">Phosphorylation</span></a></li>
+
     <li class="toclevel-1 tocsection-5"><a href="http://en.wikipedia.org/wiki/Proteome#See_also"><span class="tocnumber">5</span> <span class="toctext">See also</span></a></li>
            <li class="toclevel-3 tocsection-4"><a href="http://en.wikipedia.org/wiki/Proteomics#Ubiquitination"><span class="tocnumber">1.1.2</span> <span class="toctext">Ubiquitination</span></a></li>
+
     <li class="toclevel-1 tocsection-6"><a href="http://en.wikipedia.org/wiki/Proteome#References"><span class="tocnumber">6</span> <span class="toctext">References</span></a></li>
            <li class="toclevel-3 tocsection-5"><a href="http://en.wikipedia.org/wiki/Proteomics#Additional_modifications"><span class="tocnumber">1.1.3</span> <span class="toctext">Additional modifications</span></a></li>
+
     <li class="toclevel-1 tocsection-7"><a href="http://en.wikipedia.org/wiki/Proteome#External_links"><span class="tocnumber">7</span> <span class="toctext">External links</span></a></li>
        </ul>
 
        </li>
 
        <li class="toclevel-2 tocsection-6"><a href="http://en.wikipedia.org/wiki/Proteomics#Distinct_proteins_are_made_under_distinct_settings"><span class="tocnumber">1.2</span> <span class="toctext">Distinct proteins are made under distinct settings</span></a></li>
 
    </ul>
 
    </li>
 
    <li class="toclevel-1 tocsection-7"><a href="http://en.wikipedia.org/wiki/Proteomics#Limitations_of_genomics_and_proteomics_studies"><span class="tocnumber">2</span> <span class="toctext">Limitations of genomics and proteomics studies</span></a></li>
 
     <li class="toclevel-1 tocsection-8"><a href="http://en.wikipedia.org/wiki/Proteomics#Methods_of_studying_proteins"><span class="tocnumber">3</span> <span class="toctext">Methods of studying proteins</span></a>
 
    <ul>
 
        <li class="toclevel-2 tocsection-9"><a href="http://en.wikipedia.org/wiki/Proteomics#Protein_detection_with_immunoassays"><span class="tocnumber">3.1</span> <span class="toctext">Protein detection with immunoassays</span></a></li>
 
        <li class="toclevel-2 tocsection-10"><a href="http://en.wikipedia.org/wiki/Proteomics#Identifying_proteins_that_are_post-translationally_modified"><span class="tocnumber">3.2</span> <span class="toctext">Identifying proteins that are post-translationally modified</span></a></li>
 
        <li class="toclevel-2 tocsection-11"><a href="http://en.wikipedia.org/wiki/Proteomics#Determining_the_existence_of_proteins_in_complex_mixtures"><span class="tocnumber">3.3</span> <span class="toctext">Determining the existence of proteins in complex mixtures</span></a></li>
 
    </ul>
 
    </li>
 
     <li class="toclevel-1 tocsection-12"><a href="http://en.wikipedia.org/wiki/Proteomics#Establishing_protein.E2.80.93protein_interactions"><span class="tocnumber">4</span> <span class="toctext">Establishing protein&ndash;protein interactions</span></a></li>
 
    <li class="toclevel-1 tocsection-13"><a href="http://en.wikipedia.org/wiki/Proteomics#Practical_applications_of_proteomics"><span class="tocnumber">5</span> <span class="toctext">Practical applications of proteomics</span></a>
 
    <ul>
 
        <li class="toclevel-2 tocsection-14"><a href="http://en.wikipedia.org/wiki/Proteomics#Biomarkers"><span class="tocnumber">5.1</span> <span class="toctext">Biomarkers</span></a></li>
 
        <li class="toclevel-2 tocsection-15"><a href="http://en.wikipedia.org/wiki/Proteomics#Proteogenomics"><span class="tocnumber">5.2</span> <span class="toctext">Proteogenomics</span></a></li>
 
        <li class="toclevel-2 tocsection-16"><a href="http://en.wikipedia.org/wiki/Proteomics#Current_research_methodologies"><span class="tocnumber">5.3</span> <span class="toctext">Current research methodologies</span></a></li>
 
    </ul>
 
    </li>
 
    <li class="toclevel-1 tocsection-17"><a href="http://en.wikipedia.org/wiki/Proteomics#Structural_proteomics"><span class="tocnumber">6</span> <span class="toctext">Structural proteomics</span></a></li>
 
    <li class="toclevel-1 tocsection-18"><a href="http://en.wikipedia.org/wiki/Proteomics#Expression_proteomics"><span class="tocnumber">7</span> <span class="toctext">Expression proteomics</span></a></li>
 
    <li class="toclevel-1 tocsection-19"><a href="http://en.wikipedia.org/wiki/Proteomics#Interaction_proteomics"><span class="tocnumber">8</span> <span class="toctext">Interaction proteomics</span></a></li>
 
    <li class="toclevel-1 tocsection-20"><a href="http://en.wikipedia.org/wiki/Proteomics#Proteomics_and_system_biology"><span class="tocnumber">9</span> <span class="toctext">Proteomics and system biology</span></a></li>
 
    <li class="toclevel-1 tocsection-21"><a href="http://en.wikipedia.org/wiki/Proteomics#Current_proteomic_technologies"><span class="tocnumber">10</span> <span class="toctext">Current proteomic technologies</span></a>
 
    <ul>
 
        <li class="toclevel-2 tocsection-22"><a href="http://en.wikipedia.org/wiki/Proteomics#Mass_spectrometry_and_protein_profiling"><span class="tocnumber">10.1</span> <span class="toctext">Mass spectrometry and protein profiling</span></a></li>
 
        <li class="toclevel-2 tocsection-23"><a href="http://en.wikipedia.org/wiki/Proteomics#Protein_chips"><span class="tocnumber">10.2</span> <span class="toctext">Protein chips</span></a></li>
 
        <li class="toclevel-2 tocsection-24"><a href="http://en.wikipedia.org/wiki/Proteomics#Reverse-phased_protein_microarrays"><span class="tocnumber">10.3</span> <span class="toctext">Reverse-phased protein microarrays</span></a></li>
 
    </ul>
 
    </li>
 
    <li class="toclevel-1 tocsection-25"><a href="http://en.wikipedia.org/wiki/Proteomics#Bioinformatics_for_proteomics_.28proteome_informatics.29"><span class="tocnumber">11</span> <span class="toctext">Bioinformatics for proteomics (proteome informatics)</span></a>
 
    <ul>
 
        <li class="toclevel-2 tocsection-26"><a href="http://en.wikipedia.org/wiki/Proteomics#Protein_identification"><span class="tocnumber">11.1</span> <span class="toctext">Protein identification</span></a></li>
 
        <li class="toclevel-2 tocsection-27"><a href="http://en.wikipedia.org/wiki/Proteomics#Protein_structure"><span class="tocnumber">11.2</span> <span class="toctext">Protein structure</span></a></li>
 
        <li class="toclevel-2 tocsection-28"><a href="http://en.wikipedia.org/wiki/Proteomics#Post-translational_modifications_2"><span class="tocnumber">11.3</span> <span class="toctext">Post-translational modifications</span></a></li>
 
        <li class="toclevel-2 tocsection-29"><a href="http://en.wikipedia.org/wiki/Proteomics#Computational_methods_in_studying_protein_biomarkers"><span class="tocnumber">11.4</span> <span class="toctext">Computational methods in studying protein biomarkers</span></a></li>
 
    </ul>
 
    </li>
 
    <li class="toclevel-1 tocsection-30"><a href="http://en.wikipedia.org/wiki/Proteomics#Emerging_trends_in_proteomics"><span class="tocnumber">12</span> <span class="toctext">Emerging trends in proteomics</span></a>
 
    <ul>
 
        <li class="toclevel-2 tocsection-31"><a href="http://en.wikipedia.org/wiki/Proteomics#Human_plasma_proteome"><span class="tocnumber">12.1</span> <span class="toctext">Human plasma proteome</span></a></li>
 
    </ul>
 
    </li>
 
     <li class="toclevel-1 tocsection-32"><a href="http://en.wikipedia.org/wiki/Proteomics#See_also"><span class="tocnumber">13</span> <span class="toctext">See also</span></a>
 
    <ul>
 
        <li class="toclevel-2 tocsection-33"><a href="http://en.wikipedia.org/wiki/Proteomics#Protein_databases"><span class="tocnumber">13.1</span> <span class="toctext">Protein databases</span></a></li>
 
        <li class="toclevel-2 tocsection-34"><a href="http://en.wikipedia.org/wiki/Proteomics#Research_centers"><span class="tocnumber">13.2</span> <span class="toctext">Research centers</span></a></li>
 
    </ul>
 
    </li>
 
     <li class="toclevel-1 tocsection-35"><a href="http://en.wikipedia.org/wiki/Proteomics#References"><span class="tocnumber">14</span> <span class="toctext">References</span></a></li>
 
     <li class="toclevel-1 tocsection-36"><a href="http://en.wikipedia.org/wiki/Proteomics#Bibliography"><span class="tocnumber">15</span> <span class="toctext">Bibliography</span></a></li>
 
    <li class="toclevel-1 tocsection-37"><a href="http://en.wikipedia.org/wiki/Proteomics#External_links"><span class="tocnumber">16</span> <span class="toctext">External links</span></a></li>
 
 
</ul>
 
</ul>
 
</div>
 
</div>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<h2><span id="Complexity_of_the_problem" class="mw-headline">Complexity of the problem</span></h2>
+
<h2><span id="Systems" class="mw-headline">Systems</span></h2>
<p>After genomics and <a title="Transcriptome" href="http://en.wikipedia.org/wiki/Transcriptome">transcriptomics</a>, proteomics is the next step in the study of biological systems. It is more complicated than genomics because an organism's genome is more or less constant, whereas the proteome differs from cell to cell and from time to time. Distinct genes are expressed in different cell types, which means that even the basic set of proteins that are produced in a cell needs to be identified.</p>
+
<p>The term has been applied to several different types of biological systems. A <b>cellular proteome</b> is the collection of proteins found in a particular <a title="Cell (biology)" href="http://en.wikipedia.org/wiki/Cell_(biology)">cell</a> type under a particular set of environmental conditions such as exposure to <a title="Hormone" href="http://en.wikipedia.org/wiki/Hormone">hormone stimulation</a>. It can also be useful to consider an organism's <b>complete proteome</b>, which can be conceptualized as the complete set of proteins from all of the various cellular proteomes. This is very roughly the protein equivalent of the <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a>. The term &quot;proteome&quot; has also been used to refer to the collection of proteins in certain sub-cellular biological systems. For example, all of the proteins in a virus can be called a viral proteome.</p>
<p>In the past this phenomenon was done by RNA analysis, but it was found not to correlate with protein content.<sup id="cite_ref-6" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-6"><span>[</span>6<span>]</span></a></sup><sup id="cite_ref-7" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-7"><span>[</span>7<span>]</span></a></sup> It is now known that mRNA is not always translated into protein,<sup id="cite_ref-8" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-8"><span>[</span>8<span>]</span></a></sup> and the amount of protein produced for a given amount of mRNA depends on the gene it is transcribed from and on the current physiological state of the cell. Proteomics confirms the presence of the protein and provides a direct measure of the quantity present.</p>
+
<h2><span id="History" class="mw-headline">History</span></h2>
<h3><span id="Post-translational_modifications" class="mw-headline">Post-translational modifications</span></h3>
+
<p><a title="Marc Wilkins (geneticist)" href="http://en.wikipedia.org/wiki/Marc_Wilkins_(geneticist)">Marc Wilkins</a> coined the term <i>proteome</i> <sup id="cite_ref-1" class="reference"><a href="http://en.wikipedia.org/wiki/Proteome#cite_note-1"><span>[</span>1<span>]</span></a></sup> in 1994 in a symposium on &quot;2D Electrophoresis: from protein maps to genomes&quot; held in Siena in Italy. It appeared in print in 1995,<sup id="cite_ref-2" class="reference"><a href="http://en.wikipedia.org/wiki/Proteome#cite_note-2"><span>[</span>2<span>]</span></a></sup> with the publication of part of Wilkins's PhD thesis. Wilkins used the term to describe the entire complement of <a title="Protein" href="http://en.wikipedia.org/wiki/Protein">proteins</a> expressed by a genome, cell, tissue or organism.</p>
<p>Not only does the translation from mRNA cause differences, but many proteins are also subjected to a wide variety of chemical modifications after translation. Many of these post-translational modifications are critical to the protein's function.</p>
+
<h2><span id="Size_and_contents" class="mw-headline">Size and contents</span></h2>
<h4><span id="Phosphorylation" class="mw-headline">Phosphorylation</span></h4>
+
<p>The proteome is larger than the <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a>, especially in <a title="Eukaryota" class="mw-redirect" href="http://en.wikipedia.org/wiki/Eukaryota">eukaryotes</a>, in the sense that there are more <a title="Protein" href="http://en.wikipedia.org/wiki/Protein">proteins</a> than <a title="Gene" href="http://en.wikipedia.org/wiki/Gene">genes</a>. This is due to <a title="Alternative splicing" href="http://en.wikipedia.org/wiki/Alternative_splicing">alternative splicing</a> of genes and <a title="Post-translational modification" href="http://en.wikipedia.org/wiki/Post-translational_modification">post-translational modifications</a> like <a title="Glycosylation" href="http://en.wikipedia.org/wiki/Glycosylation">glycosylation</a> or <a title="Phosphorylation" href="http://en.wikipedia.org/wiki/Phosphorylation">phosphorylation</a>.</p>
<p>One such modification is <a title="Phosphorylation" href="http://en.wikipedia.org/wiki/Phosphorylation">phosphorylation</a>, which happens to many <a title="Enzymes" class="mw-redirect" href="http://en.wikipedia.org/wiki/Enzymes">enzymes</a> and structural proteins in the process of <a title="Cell signaling" href="http://en.wikipedia.org/wiki/Cell_signaling">cell signaling</a>. The addition of a phosphate to particular amino acids&mdash;most commonly <a title="Serine" href="http://en.wikipedia.org/wiki/Serine">serine</a> and <a title="Threonine" href="http://en.wikipedia.org/wiki/Threonine">threonine</a><sup id="cite_ref-9" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-9"><span>[</span>9<span>]</span></a></sup> mediated by serine/threonine <a title="Kinase" href="http://en.wikipedia.org/wiki/Kinase">kinases</a>, or more rarely <a title="Tyrosine" href="http://en.wikipedia.org/wiki/Tyrosine">tyrosine</a> mediated by tyrosine <a title="Kinases" class="mw-redirect" href="http://en.wikipedia.org/wiki/Kinases">kinases</a>&mdash;causes a protein to become a target for binding or interacting with a distinct set of other proteins that recognize the phosphorylated domain.</p>
+
<p>Moreover the proteome has at least two levels of complexity lacking in the genome. While the genome is defined by the sequence of <a title="Nucleotide" href="http://en.wikipedia.org/wiki/Nucleotide">nucleotides</a>, the proteome cannot be limited to the sum of the sequences of the proteins present. Knowledge of the proteome requires knowledge of (1) the <a title="Protein structure" href="http://en.wikipedia.org/wiki/Protein_structure">structure</a> of the proteins in the proteome and (2) the functional interaction between the proteins.</p>
<p>Because protein phosphorylation is one of the most-studied protein modifications, many &quot;proteomic&quot; efforts are geared to determining the set of phosphorylated proteins in a particular cell or tissue-type under particular circumstances. This alerts the scientist to the signaling pathways that may be active in that instance.</p>
+
<h2><span id="Studying_the_proteome" class="mw-headline">Studying the proteome</span></h2>
<h4><span id="Ubiquitination" class="mw-headline">Ubiquitination</span></h4>
+
<p>Proteomics, the study of the proteome, has largely been practiced through the separation of proteins by two dimensional <a title="Gel electrophoresis" href="http://en.wikipedia.org/wiki/Gel_electrophoresis">gel electrophoresis</a>. In the first dimension, the proteins are separated by <a title="Isoelectric focusing" href="http://en.wikipedia.org/wiki/Isoelectric_focusing">isoelectric focusing</a>, which resolves proteins on the basis of charge. In the second dimension, proteins are separated by <a title="Molecular mass" href="http://en.wikipedia.org/wiki/Molecular_mass">molecular weight</a> using <a title="SDS-PAGE" class="mw-redirect" href="http://en.wikipedia.org/wiki/SDS-PAGE">SDS-PAGE</a>. The gel is dyed with <a title="Coomassie Brilliant Blue" href="http://en.wikipedia.org/wiki/Coomassie_Brilliant_Blue">Coomassie Brilliant Blue</a> or <a title="Silver" href="http://en.wikipedia.org/wiki/Silver">silver</a> to visualize the proteins. Spots on the gel are proteins that have migrated to specific locations.</p>
<p><a title="Ubiquitin" href="http://en.wikipedia.org/wiki/Ubiquitin">Ubiquitin</a> is a small protein that can be affixed to certain protein substrates by enzymes called <a title="E3 ubiquitin ligase" class="mw-redirect" href="http://en.wikipedia.org/wiki/E3_ubiquitin_ligase">E3 ubiquitin ligases</a>. Determining which proteins are poly-ubiquitinated helps understand how protein pathways are regulated. This is, therefore, an additional legitimate &quot;proteomic&quot; study. Similarly, once a researcher determines which substrates are ubiquitinated by each ligase, determining the set of ligases expressed in a particular cell type is helpful.</p>
+
<p>The <a title="Mass spectrometry" href="http://en.wikipedia.org/wiki/Mass_spectrometry">mass spectrometer</a> has augmented proteomics.<sup id="cite_ref-3" class="reference"><a href="http://en.wikipedia.org/wiki/Proteome#cite_note-3"><span>[</span>3<span>]</span></a></sup> <a title="Peptide mass fingerprinting" href="http://en.wikipedia.org/wiki/Peptide_mass_fingerprinting">Peptide mass fingerprinting</a> identifies a protein by cleaving it into short peptides and then deduces the protein's identity by matching the observed peptide masses against a <a title="Sequence database" href="http://en.wikipedia.org/wiki/Sequence_database">sequence database</a>. <a title="Tandem mass spectrometry" href="http://en.wikipedia.org/wiki/Tandem_mass_spectrometry">Tandem mass spectrometry</a>, on the other hand, can get sequence information from individual peptides by isolating them, colliding them with a non-reactive gas, and then cataloguing the fragment <a title="Ion (physics)" class="mw-redirect" href="http://en.wikipedia.org/wiki/Ion_(physics)">ions</a> produced.</p>
<h4><span id="Additional_modifications" class="mw-headline">Additional modifications</span></h4>
+
<p>In May 2014, a draft map of the human proteome was published in <i><a title="Nature (journal)" href="http://en.wikipedia.org/wiki/Nature_(journal)">Nature</a></i>.<sup id="cite_ref-4" class="reference"><a href="http://en.wikipedia.org/wiki/Proteome#cite_note-4"><span>[</span>4<span>]</span></a></sup> This map was generated using high-resolution Fourier-transform mass spectrometry. This study profiled 30 histologically normal human samples resulting in the identification of proteins coded by 17,294 genes. This accounts for around 84% of the total annotated protein-coding genes.</p>
<p>In addition to <a title="Phosphorylation" href="http://en.wikipedia.org/wiki/Phosphorylation">phosphorylation</a> and <a title="Ubiquitination" class="mw-redirect" href="http://en.wikipedia.org/wiki/Ubiquitination">ubiquitination</a>, proteins can be subjected to (among others) <a title="Methylation" href="http://en.wikipedia.org/wiki/Methylation">methylation</a>, <a title="Acetylation" href="http://en.wikipedia.org/wiki/Acetylation">acetylation</a>, <a title="Glycosylation" href="http://en.wikipedia.org/wiki/Glycosylation">glycosylation</a>, <a title="Oxidation" class="mw-redirect" href="http://en.wikipedia.org/wiki/Oxidation">oxidation</a> and <a title="Nitrosylation" href="http://en.wikipedia.org/wiki/Nitrosylation">nitrosylation</a>. Some proteins undergo all these modifications, often in time-dependent combinations. This illustrates the potential complexity of studying protein structure and function.</p>
 
<h3><span id="Distinct_proteins_are_made_under_distinct_settings" class="mw-headline">Distinct proteins are made under distinct settings</span></h3>
 
<p>Even studying a particular cell type, that cell may make different sets of proteins at different times, or under different conditions. Furthermore, as mentioned, any one protein can undergo a wide range of post-translational modifications.</p>
 
<p>Therefore a &quot;proteomics&quot; study can become complex, even if the topic of the study is restricted. In more ambitious settings, such as when a biomarker for a tumor is sought&nbsp;&ndash; when the proteomics scientist is obliged to study blood serum samples from multiple cancer patients.<sup class="noprint Inline-Template Template-Fact" style="white-space: nowrap">[<i><a title="Wikipedia:Citation needed" href="http://en.wikipedia.org/wiki/Wikipedia:Citation_needed"><span title="This claim needs references to reliable sources. (October 2014)">citation needed</span></a></i>]</sup></p>
 
<h2><span id="Limitations_of_genomics_and_proteomics_studies" class="mw-headline">Limitations of genomics and proteomics studies</span></h2>
 
<p>Proteomics gives a different level of understanding than genomics for many reasons:</p>
 
<ul>
 
    <li>the level of transcription of a gene gives only a rough estimate of its <i>level of translation</i> into a protein.<sup id="cite_ref-Gygi1999_10-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Gygi1999-10"><span>[</span>10<span>]</span></a></sup> An <a title="MRNA" class="mw-redirect" href="http://en.wikipedia.org/wiki/MRNA">mRNA</a> produced in abundance may be degraded rapidly or translated inefficiently, resulting in a small amount of protein.</li>
 
    <li>as mentioned above many proteins experience <i><a title="Post-translational modification" href="http://en.wikipedia.org/wiki/Post-translational_modification">post-translational modifications</a></i> that profoundly affect their activities; for example some proteins are not active until they become phosphorylated. Methods such as <a title="Phosphoproteomics" href="http://en.wikipedia.org/wiki/Phosphoproteomics">phosphoproteomics</a> and <a title="Glycoproteomics" href="http://en.wikipedia.org/wiki/Glycoproteomics">glycoproteomics</a> are used to study post-translational modifications.</li>
 
    <li>many transcripts give rise to more than one protein, through <a title="Alternative splicing" href="http://en.wikipedia.org/wiki/Alternative_splicing">alternative splicing</a> or alternative post-translational modifications.</li>
 
    <li>many proteins form complexes with other proteins or RNA molecules, and only function in the presence of these other molecules.</li>
 
    <li>protein degradation rate plays an important role in protein content.<sup id="cite_ref-11" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-11"><span>[</span>11<span>]</span></a></sup></li>
 
</ul>
 
<p><i>Reproducibility</i>. Proteomics experiments conducted in one laboratory are not easily reproduced in another. For instance, Peng et al.<sup id="cite_ref-Peng2003_12-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Peng2003-12"><span>[</span>12<span>]</span></a></sup> have identified 1504 yeast proteins in a proteomics experiment of which only 858 were found in a similar previous study.<sup id="cite_ref-Washburn2001_13-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Washburn2001-13"><span>[</span>13<span>]</span></a></sup> Further, the previous study identified 607 proteins that were not found by Peng et al. This translates to a reproducibility of 57% (Peng vs. Washburn) to 59% (Washburn vs. Peng).</p>
 
<h2><span id="Methods_of_studying_proteins" class="mw-headline">Methods of studying proteins</span></h2>
 
<h3><span id="Protein_detection_with_immunoassays" class="mw-headline">Protein detection with immunoassays</span></h3>
 
<h3>The <a title="Enzyme-linked immunosorbent assay" class="mw-redirect" href="http://en.wikipedia.org/wiki/Enzyme-linked_immunosorbent_assay">enzyme-linked immunosorbent assay</a> (ELISA) has been used for decades to detect and quantitatively measure proteins in samples.</h3>
 
<p>The use of <a title="Mass spectrometric immunoassay" href="http://en.wikipedia.org/wiki/Mass_spectrometric_immunoassay">mass spectrometric immunoassay</a> is the gold standard for both discovery and quantitative proteomics. Randall Nelson pioneered the use of immunoassays with mass spectrometry in 1995.</p>
 
<p><a title="SISCAPA (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=SISCAPA&amp;action=edit&amp;redlink=1">SISCAPA</a>. Stable Isotope Standard Capture with Anti-Peptide Antibodies, is a term introduced by Leigh Anderson</p>
 
<h3><span id="Identifying_proteins_that_are_post-translationally_modified" class="mw-headline">Identifying proteins that are post-translationally modified</span></h3>
 
<p>One way a particular protein can be studied is to develop an <a title="Antibody" href="http://en.wikipedia.org/wiki/Antibody">antibody</a> specific to that modification. For example, there are antibodies that only recognize certain proteins when they are tyrosine-<a title="Phosphorylated" class="mw-redirect" href="http://en.wikipedia.org/wiki/Phosphorylated">phosphorylated</a>, known as phospho-specific antibodies. Also, there are antibodies specific to other modifications. These can be used to determine the set of proteins that have undergone the modification of interest.</p>
 
<p>For <a title="Sugar" href="http://en.wikipedia.org/wiki/Sugar">sugar</a> modifications, such as <a title="Glycosylation" href="http://en.wikipedia.org/wiki/Glycosylation">glycosylation</a> of proteins, certain <a title="Lectins" class="mw-redirect" href="http://en.wikipedia.org/wiki/Lectins">lectins</a> have been discovered that bind sugars. These too can be used.<sup class="noprint Inline-Template Template-Fact" style="white-space: nowrap">[<i><a title="Wikipedia:Citation needed" href="http://en.wikipedia.org/wiki/Wikipedia:Citation_needed"><span title="This claim needs references to reliable sources. (January 2012)">citation needed</span></a></i>]</sup></p>
 
<p>A more common way to determine post-translational modification of interest is to subject a complex mixture of proteins to electrophoresis in <i>two-dimensions</i>, which simply means that the proteins are electrophoresed first in one direction, and then in another, which allows small differences in a protein to be visualized by separating a modified protein from its unmodified form. This methodology is known as &quot;<a title="Two-dimensional gel electrophoresis" href="http://en.wikipedia.org/wiki/Two-dimensional_gel_electrophoresis">two-dimensional gel electrophoresis</a>&quot;.<sup id="cite_ref-Klopfleisch1_14-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Klopfleisch1-14"><span>[</span>14<span>]</span></a></sup></p>
 
<p>Recently, another approach has been developed called <a title="Protomap (proteomics)" href="http://en.wikipedia.org/wiki/Protomap_(proteomics)">PROTOMAP</a>, which combines <a title="SDS-PAGE" class="mw-redirect" href="http://en.wikipedia.org/wiki/SDS-PAGE">SDS-PAGE</a> with <a title="Shotgun proteomics" href="http://en.wikipedia.org/wiki/Shotgun_proteomics">shotgun proteomics</a> to enable detection of changes in gel-migration, such as those caused by <a title="Proteolysis" href="http://en.wikipedia.org/wiki/Proteolysis">proteolysis</a> or <a title="Post translational modification" class="mw-redirect" href="http://en.wikipedia.org/wiki/Post_translational_modification">post translational modification</a>.<sup id="cite_ref-pmid18724940_15-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-pmid18724940-15"><span>[</span>15<span>]</span></a></sup></p>
 
<h3><span id="Determining_the_existence_of_proteins_in_complex_mixtures" class="mw-headline">Determining the existence of proteins in complex mixtures</span></h3>
 
<p><a title="Antibodies" class="mw-redirect" href="http://en.wikipedia.org/wiki/Antibodies">Antibodies</a> to particular proteins or to their modified forms have been used in <a title="Biochemistry" href="http://en.wikipedia.org/wiki/Biochemistry">biochemistry</a> and <a title="Cell biology" href="http://en.wikipedia.org/wiki/Cell_biology">cell biology</a> studies. These are among the most common tools used by practicing biologists today.</p>
 
<p>For more quantitative determinations of protein amounts, techniques such as <a title="ELISA" href="http://en.wikipedia.org/wiki/ELISA">ELISAs</a> can be used.<sup class="noprint Inline-Template Template-Fact" style="white-space: nowrap">[<i><a title="Wikipedia:Citation needed" href="http://en.wikipedia.org/wiki/Wikipedia:Citation_needed"><span title="This claim needs references to reliable sources. (January 2012)">citation needed</span></a></i>]</sup></p>
 
<p>For proteomic study, more recent techniques such as <a title="Matrix-assisted laser desorption/ionization" href="http://en.wikipedia.org/wiki/Matrix-assisted_laser_desorption/ionization">matrix-assisted laser desorption/ionization (MALDI)</a><sup id="cite_ref-Klopfleisch1_14-1" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Klopfleisch1-14"><span>[</span>14<span>]</span></a></sup> have been employed for rapid determination of proteins in particular mixtures and increasingly <a title="Electrospray ionization" href="http://en.wikipedia.org/wiki/Electrospray_ionization">electrospray ionization (ESI)</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space: nowrap">[<i><a title="Wikipedia:Citation needed" href="http://en.wikipedia.org/wiki/Wikipedia:Citation_needed"><span title="This claim needs references to reliable sources. (January 2012)">citation needed</span></a></i>]</sup></p>
 
<p>More recently, thermal protease resistance was exploited in a novel proteomic assay called <a title="Fast parallel proteolysis (FASTpp)" class="mw-redirect" href="http://en.wikipedia.org/wiki/Fast_parallel_proteolysis_(FASTpp)">Fast parallel proteolysis (FASTpp)</a>, which enabled detection of specific proteins in <a title="Escherichia coli" href="http://en.wikipedia.org/wiki/Escherichia_coli">E. coli</a> lysate and might be used in the future to detect proteomic perturbations in <a title="Cancer" href="http://en.wikipedia.org/wiki/Cancer">cancer</a> or mechanistic effects of <a title="Point mutations" class="mw-redirect" href="http://en.wikipedia.org/wiki/Point_mutations">point mutations</a>.<sup id="cite_ref-16" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-16"><span>[</span>16<span>]</span></a></sup></p>
 
<h2><span id="Establishing_protein.E2.80.93protein_interactions" class="mw-headline">Establishing protein&ndash;protein interactions</span></h2>
 
<p>Most proteins function in collaboration with other proteins, and one goal of proteomics is to identify which proteins interact. This is especially useful in determining potential partners in <a title="Cell signaling" href="http://en.wikipedia.org/wiki/Cell_signaling">cell signaling</a> cascades.</p>
 
<p>Several methods are available to probe protein&ndash;protein interactions. The traditional method is yeast <a title="Two-hybrid screening" href="http://en.wikipedia.org/wiki/Two-hybrid_screening">two-hybrid analysis</a>. New methods include <a title="Surface plasmon resonance" href="http://en.wikipedia.org/wiki/Surface_plasmon_resonance">surface plasmon resonance</a> (SPR),<sup id="cite_ref-17" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-17"><span>[</span>17<span>]</span></a></sup><sup id="cite_ref-18" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-18"><span>[</span>18<span>]</span></a></sup> <a title="Protein microarray" href="http://en.wikipedia.org/wiki/Protein_microarray">protein microarrays</a>, <a title="Immunoaffinity chromatography" class="mw-redirect" href="http://en.wikipedia.org/wiki/Immunoaffinity_chromatography">immunoaffinity chromatography</a> followed by <a title="Mass spectrometry" href="http://en.wikipedia.org/wiki/Mass_spectrometry">mass spectrometry</a>, <a title="Dual polarisation interferometry" class="mw-redirect" href="http://en.wikipedia.org/wiki/Dual_polarisation_interferometry">dual polarisation interferometry</a>, <a title="Microscale Thermophoresis" class="mw-redirect" href="http://en.wikipedia.org/wiki/Microscale_Thermophoresis">Microscale Thermophoresis</a> and experimental methods such as <a title="Phage display" href="http://en.wikipedia.org/wiki/Phage_display">phage display</a> and computational methods.</p>
 
<h2><span id="Practical_applications_of_proteomics" class="mw-headline">Practical applications of proteomics</span></h2>
 
<p>One major development to come from the study of human genes and proteins has been the identification of potential new drugs for the treatment of disease. This relies on genome and proteome information to identify proteins associated with a disease, which computer software can then use as targets for new drugs. For example, if a certain protein is implicated in a disease, its 3D structure provides the information to design drugs to interfere with the action of the protein. A molecule that fits the active site of an enzyme, but cannot be released by the enzyme, inactivates the enzyme. This is the basis of new drug-discovery tools, which aim to find new drugs to inactivate proteins involved in disease. As genetic differences among individuals are found, researchers expect to use these techniques to develop personalized drugs that are more effective for the individual.<sup id="cite_ref-Vaidyanathan12_19-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Vaidyanathan12-19"><span>[</span>19<span>]</span></a></sup></p>
 
<p>Proteomics is also used to reveal complex plant-insect interactions that help identify candidate genes involved in the defensive response of plants to herbivory.<sup id="cite_ref-20" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-20"><span>[</span>20<span>]</span></a></sup><sup id="cite_ref-21" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-21"><span>[</span>21<span>]</span></a></sup><sup id="cite_ref-22" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-22"><span>[</span>22<span>]</span></a></sup></p>
 
<h3><span id="Biomarkers" class="mw-headline">Biomarkers</span></h3>
 
<div class="hatnote relarticle mainarticle">Main article: <a title="Biomarker" href="http://en.wikipedia.org/wiki/Biomarker">Biomarker</a></div>
 
<p>The <a title="National Institutes of Health" href="http://en.wikipedia.org/wiki/National_Institutes_of_Health">National Institutes of Health</a> has defined a biomarker as &ldquo;a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.&rdquo;<sup id="cite_ref-23" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-23"><span>[</span>23<span>]</span></a></sup><sup id="cite_ref-24" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-24"><span>[</span>24<span>]</span></a></sup></p>
 
<p>Understanding the proteome, the structure and function of each protein and the complexities of protein&ndash;protein interactions is critical for developing the most effective diagnostic techniques and disease treatments in the future. For example, proteomics is highly useful in identification of candidate biomarkers (proteins in body fluids that are of value for diagnosis), identification of the bacterial antigens that are targeted by the immune response, and identification of possible immunohistochemistry markers of infectious or neoplastic diseases.<sup id="cite_ref-Ceciliani2014_25-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Ceciliani2014-25"><span>[</span>25<span>]</span></a></sup></p>
 
<p>An interesting use of proteomics is using specific protein biomarkers to diagnose disease. A number of techniques allow to test for proteins produced during a particular disease, which helps to diagnose the disease quickly. Techniques include <a title="Western blot" href="http://en.wikipedia.org/wiki/Western_blot">western blot</a>, <a title="Immunohistochemical staining" class="mw-redirect" href="http://en.wikipedia.org/wiki/Immunohistochemical_staining">immunohistochemical staining</a>, <a title="Enzyme linked immunosorbent assay" class="mw-redirect" href="http://en.wikipedia.org/wiki/Enzyme_linked_immunosorbent_assay">enzyme linked immunosorbent assay</a> (ELISA) or <a title="Mass spectrometry" href="http://en.wikipedia.org/wiki/Mass_spectrometry">mass spectrometry</a>.<sup id="cite_ref-Klopfleisch1_14-2" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Klopfleisch1-14"><span>[</span>14<span>]</span></a></sup><sup id="cite_ref-26" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-26"><span>[</span>26<span>]</span></a></sup> <a title="Secretomics" href="http://en.wikipedia.org/wiki/Secretomics">Secretomics</a>, a subfield of proteomics that studies <a title="Secretory protein" href="http://en.wikipedia.org/wiki/Secretory_protein">secreted proteins</a> and secretion pathways using proteomic approaches, has recently emerged as an important tool for the discovery of biomarkers of disease.<sup id="cite_ref-pmid17425459_27-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-pmid17425459-27"><span>[</span>27<span>]</span></a></sup></p>
 
<h3><span id="Proteogenomics" class="mw-headline">Proteogenomics</span></h3>
 
<p>In what is now commonly referred to as <a title="Proteogenomics" href="http://en.wikipedia.org/wiki/Proteogenomics">proteogenomics</a>, proteomic technologies such as <a title="Mass spectrometry" href="http://en.wikipedia.org/wiki/Mass_spectrometry">mass spectrometry</a> are used for improving gene annotations. Parallel analysis of the genome and the proteome facilitates discovery of post-translational modifications and proteolytic events,<sup id="cite_ref-Gupta07_28-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Gupta07-28"><span>[</span>28<span>]</span></a></sup> especially when comparing multiple species (comparative proteogenomics).<sup id="cite_ref-Gupta08_29-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Gupta08-29"><span>[</span>29<span>]</span></a></sup></p>
 
<h3><span id="Current_research_methodologies" class="mw-headline">Current research methodologies</span></h3>
 
<p>Fluorescence two-dimensional differential gel electrophoresis (2-D DIGE)<sup id="cite_ref-Tonge01_30-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Tonge01-30"><span>[</span>30<span>]</span></a></sup> can be used to quantify variation in the 2-D DIGE process and establish statistically valid thresholds for assigning quantitative changes between samples.<sup id="cite_ref-Tonge01_30-1" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Tonge01-30"><span>[</span>30<span>]</span></a></sup></p>
 
<p>Comparative proteomic analysis can reveal the role of proteins in complex biological systems, including reproduction. For example, treatment with the insecticide triazophos causes an increase in the content of brown planthopper (<i>Nilaparvata lugens</i> (St&aring;l)) male accessory gland proteins (Acps) that can be transferred to females via mating, causing an increase in fecundity (i.e. birth rate) of females.<sup id="cite_ref-31" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-31"><span>[</span>31<span>]</span></a></sup> To identify changes in the types of accessory gland proteins (Acps) and reproductive proteins that mated female planthoppers received from male planthoppers, researchers conducted a comparative proteomic analysis of mated <i>N. lugens</i> females.<sup id="cite_ref-Ge_et_al_2011_32-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Ge_et_al_2011-32"><span>[</span>32<span>]</span></a></sup> The results indicated that these proteins participate in the reproductive process of <i>N. lugens</i> adult females and males.<sup id="cite_ref-Ge_et_al_2011_32-1" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Ge_et_al_2011-32"><span>[</span>32<span>]</span></a></sup></p>
 
<p>Proteome analysis of <i>Arabidopsis peroxisomes</i><sup id="cite_ref-Reumann11_33-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Reumann11-33"><span>[</span>33<span>]</span></a></sup> has been established as the major unbiased approach for identifying new peroxisomal proteins on a large scale.<sup id="cite_ref-Reumann11_33-1" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Reumann11-33"><span>[</span>33<span>]</span></a></sup></p>
 
<p>There are many approaches to characterizing the human proteome, which is estimated to contain between 20,000 and 25,000 non-redundant proteins. The number of unique protein species will likely increase by between 50,000 and 500,000 due to RNA splicing and proteolysis events, and when post-translational modification are also considered, the total number of unique human proteins is estimated to range in the low millions.<sup id="cite_ref-34" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-34"><span>[</span>34<span>]</span></a></sup><sup id="cite_ref-35" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-35"><span>[</span>35<span>]</span></a></sup></p>
 
<p>In addition, the first promising attempts to decipher the proteome of animal tumors have recently been reported.<sup id="cite_ref-Klopfleisch1_14-3" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Klopfleisch1-14"><span>[</span>14<span>]</span></a></sup></p>
 
<h2><span id="Structural_proteomics" class="mw-headline">Structural proteomics</span></h2>
 
<p>Structural proteomics includes the analysis of protein structures at large-scale. It compares protein structures and helps identify functions of newly discovered genes. The structural analysis also helps to understand that where drugs bind to proteins and also show where proteins interact with each other. This understanding is achieved using different technologies such as X-ray crystallography and NMR spectroscopy.<sup id="cite_ref-What_is_Proteomics.3F_36-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-What_is_Proteomics.3F-36"><span>[</span>36<span>]</span></a></sup></p>
 
<h2><span id="Expression_proteomics" class="mw-headline">Expression proteomics</span></h2>
 
<p>Expression proteomics includes the analysis of protein expression at larger scale. It helps identify main proteins in a particular sample, and those proteins differentially expressed in related samples&mdash;such as diseased vs. healthy tissue. If a protein is found only in a diseased sample then it can be a useful drug target or diagnostic marker. Proteins with same or similar expression profiles may also be functionally related. There are technologies such as 2D-PAGE and mass spectrometry that are used in expression proteomics.<sup id="cite_ref-What_is_Proteomics.3F_36-1" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-What_is_Proteomics.3F-36"><span>[</span>36<span>]</span></a></sup></p>
 
<h2><span id="Interaction_proteomics" class="mw-headline">Interaction proteomics</span></h2>
 
<p>Interaction proteomics is the analysis of protein interactions at larger scale. The characterization of protein-protein interactions are useful to determine the protein functions and it also explains the way proteins assemble in bigger complexes. Technologies such as affinity purification, mass spectrometry, and the yeast two-hybrid system are particularly useful in interaction proteomics.<sup id="cite_ref-What_is_Proteomics.3F_36-2" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-What_is_Proteomics.3F-36"><span>[</span>36<span>]</span></a></sup></p>
 
<p>Proteome analysis techniques are not simple and straightforward as those used in transcriptomics. The benefit of proteomics, however, is that it deals with the real functional molecules of the cells. It is known that strong gene expression results in an abundant mRNA but it does not necessarily mean that the corresponding protein is also abundant. In proteomics things are not so simple as one gene does not always produce the same protein. The genes usually consist of a series of sub structures, which are called exons. These sub structures can be joined in a variety of ways, which helps to give momentum to a whole series of very similar but different proteins. Further increasing complications, once proteins are made, they are ornamented with different other chemicals. These chemicals can be phosphate, sugars or fats. The effect of the decorations is severe on the function of protein; for example phosphate normally behaves as an on-off switch and sugars usually tell the proteins where to go and attach in the cell. Therefore, it was comparatively very simple and easy to sequence the human genome as there are only 46 molecules and they are made up of 4 building blocks or letters (A, C, G, T) whereas proteins have 20 building blocks, each of which can be customized or ornamented after the protein is built. Hence, proteomics have to deal with ca. 30,000 genes that can be arranged to give some 800,000 proteins that can be modified and decorated with over 300 different chemicals. Additionally, proteomics also describe the nature of proteins, where they are being produced in a particular cell type and at a specific time, the way they are modified in the cell, the location where they are modified and also what they are in contact with. Finally, the most difficult thing is to determine the function of the protein.<sup id="cite_ref-What_is_Proteomics.3F_36-3" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-What_is_Proteomics.3F-36"><span>[</span>36<span>]</span></a></sup></p>
 
<h2><span id="Proteomics_and_system_biology" class="mw-headline">Proteomics and system biology</span></h2>
 
<p>Proteomics has recently come into the act as a promising force to transform biology and medicine. It is becoming increasingly apparent that changes in mRNA expression correlate poorly with protein expression changes. Proteins change enormously in patterns of expressions across developmental and physiological responses. Proteins also face changes on the act of environmental perturbations. Proteins are the actual effectors driving cell behavior. The field of proteomics strives to characterize protein structure and function, protein-protein, protein-nucleic acid, protein-lipid, and enzyme-substrate interactions, protein processing and folding, protein activation, cellular and sub-cellular localization, protein turnover and synthesis rates, and even promoter usage. Integrating proteomic data with information such as gene, mRNA and metabolic profiles helps in better understanding of how the system works.<sup id="cite_ref-Weston_.26_Hood_2004_37-0" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Weston_.26_Hood_2004-37"><span>[</span>37<span>]</span></a></sup></p>
 
<h2><span id="Current_proteomic_technologies" class="mw-headline">Current proteomic technologies</span></h2>
 
<p>Proteomics has steadily gained momentum over the past decade with the evolution of several approaches. Few of these are new and others build on traditional methods. Mass spectrometry-based methods and micro arrays are the most common technologies for large-scale study of proteins.</p>
 
<h3><span id="Mass_spectrometry_and_protein_profiling" class="mw-headline">Mass spectrometry and protein profiling</span></h3>
 
<div class="hatnote relarticle mainarticle">Main article: <a title="Mass spectrometry" href="http://en.wikipedia.org/wiki/Mass_spectrometry">Mass spectrometry</a></div>
 
<p>There are two mass spectrometry-based methods currently used for protein profiling. The more established and widespread method uses high resolution, two-dimensional electrophoresis to separate proteins from different samples in parallel, followed by selection and staining of differentially expressed proteins to be identified by mass spectrometry. Despite the advances in 2DE and its maturity, it has its limits as well. The central concern is the inability to resolve all the proteins within a sample, given their dramatic range in expression level and differing properties.<sup id="cite_ref-Weston_.26_Hood_2004_37-1" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Weston_.26_Hood_2004-37"><span>[</span>37<span>]</span></a></sup></p>
 
<p>The second quantitative approach uses stable isotope tags to differentially label proteins from two different complex mixtures. Here, the proteins within a complex mixture are labeled first isotopically, and then digested to yield labeled peptides. The labeled mixtures are then combined, the peptides separated by multidimensional liquid chromatography and analyzed by tandem mass spectrometry. Isotope coded affinity tag (ICAT) reagents are the widely used isotope tags. In this method, the cysteine residues of proteins get covalently attached to the ICAT reagent, thereby reducing the complexity of the mixtures omitting the non-cysteine residues.</p>
 
<p>Quantitative proteomics using stable isotopic tagging is an increasingly useful tool in modern development. Firstly, chemical reactions have been used to introduce tags into specific sites or proteins for the purpose of probing specific protein functionalities. The isolation of phosphorylated peptides has been achieved using isotopic labeling and selective chemistries to capture the fraction of protein among the complex mixture. Secondly, the ICAT technology was used to differentiate between partially purified or purified macromolecular complexes such as large RNA polymerase II pre-initiation complex and the proteins complexed with yeast transcription factor. Thirdly, ICAT labeling was recently combined with chromatin isolation to identify and quantify chromatin-associated proteins. Finally ICAT reagents are useful for proteomic profiling of cellular organelles and specific cellular fractions.<sup id="cite_ref-Weston_.26_Hood_2004_37-2" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Weston_.26_Hood_2004-37"><span>[</span>37<span>]</span></a></sup></p>
 
<p>Another quantitative approach is the Accurate Mass and Time (AMT) tag approach developed by <a title="Richard D. Smith" href="http://en.wikipedia.org/wiki/Richard_D._Smith">Richard D. Smith</a> and coworkers at <a title="Pacific Northwest National Laboratory" href="http://en.wikipedia.org/wiki/Pacific_Northwest_National_Laboratory">Pacific Northwest National Laboratory</a>. In this approach, increased throughput and sensitivity is achieved by avoiding the needed for tandem mass spectrometry, and making use of precisely determined separation time information and highly accurate mass determinations for peptide and protein identifications.</p>
 
<h3><span id="Protein_chips" class="mw-headline">Protein chips</span></h3>
 
<p>Balancing the use of mass spectrometers in proteomics and in medicine is the use of protein micro arrays. The aim behind protein micro arrays is to print thousands of protein detecting features for the interrogation of biological samples. Antibody arrays are an example in which a host of different antibodies are arrayed to detect their respective antigens from a sample of human blood. Another approach is the arraying of multiple protein types for the study of properties like protein-DNA, protein-protein and protein-ligand interactions. Ideally, the functional proteomic arrays would contain the entire complement of the proteins of a given organism. The first version of such arrays consisted of 5000 purified proteins from yeast deposited onto glass microscopic slides. Despite the success of first chip, it was a greater challenge for protein arrays to be implemented. Proteins are inherently much more difficult to work with than DNA. They have a broad dynamic range, are less stable than DNA and their structure is difficult to preserve on glass slides, though they are essential for most assays. The global ICAT technology has striking advantages over protein chip technologies.<sup id="cite_ref-Weston_.26_Hood_2004_37-3" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Weston_.26_Hood_2004-37"><span>[</span>37<span>]</span></a></sup></p>
 
<h3><span id="Reverse-phased_protein_microarrays" class="mw-headline">Reverse-phased protein microarrays</span></h3>
 
<p>This is a promising and newer microarray application for the diagnosis, study and treatment of complex diseases such as cancer. The technology merges laser capture microdissection (LCM) with micro array technology, to produce reverse phase protein microarrays. In this type of microarrays, the whole collection of protein themselves are immobilized with the intent of capturing various stages of disease within an individual patient. When used with LCM, reverse phase arrays can monitor the fluctuating state of proteome among different cell population within a small area of human tissue. This is useful for profiling the status of cellular signaling molecules, among a cross section of tissue that includes both normal and cancerous cells. This approach is useful in monitoring the status of key factors in normal prostate epithelium and invasive prostate cancer tissues. LCM then dissects these tissue and protein lysates were arrayed onto nitrocellulose slides, which were probed with specific antibodies. This method can track all kinds of molecular events and can compare diseased and healthy tissues within the same patient enabling the development of treatment strategies and diagnosis. The ability to acquire proteomics snapshots of neighboring cell populations, using reverse phase microarrays in conjunction with LCM has a number of applications beyond the study of tumors. The approach can provide insights into normal physiology and pathology of all the tissues and is invaluable for characterizing developmental processes and anomalies.<sup id="cite_ref-Weston_.26_Hood_2004_37-4" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Weston_.26_Hood_2004-37"><span>[</span>37<span>]</span></a></sup></p>
 
<h2><span id="Bioinformatics_for_proteomics_.28proteome_informatics.29" class="mw-headline">Bioinformatics for proteomics (proteome informatics)</span></h2>
 
<p>There is a large amount of proteomics data being collected with the help of high throughput technologies such as mass spectrometry and microarray. It would often take weeks or months to analyze the data and perform comparisons by hand. For this reason, biologists and chemists are collaborating with computer scientists and mathematicians to create programs and pipeline to computationally analyze the protein data. Using <a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics">bioinformatics</a> techniques, researchers are capable of faster analysis and data storage. A good place to find lists of current programs and databases is on the <a title="ExPASy" href="http://en.wikipedia.org/wiki/ExPASy">ExPASy</a> bioinformatics resource portal &lt;<a class="external free" href="http://www.expasy.org/proteomics" rel="nofollow">http://www.expasy.org/proteomics</a>&gt;. The applications of bioinformatics-based proteomics includes medicine, disease diagnosis, biomarker identification, and many more.</p>
 
<h3><span id="Protein_identification" class="mw-headline">Protein identification</span></h3>
 
<p>Mass spectrometry and microarray produce peptide fragmentation information but do not give identification of specific proteins present in the original sample. Due to the lack of specific protein identification, past researchers were forced to decipher the peptide fragments themselves. However, there are currently programs available for protein identification. These programs take the peptide sequences output from mass spectrometry and microarray and return information about matching or similar proteins. This is done through algorithms implemented by the program which perform alignments with proteins from known databases such as UniProt &lt;<a class="external free" href="http://www.uniprot.org/" rel="nofollow">http://www.uniprot.org/</a>&gt; and PROSITE &lt;<a class="external free" href="http://prosite.expasy.org/" rel="nofollow">http://prosite.expasy.org/</a>&gt; to predict what proteins are in the sample with a degree of certainty.<a title="Template:Methods Mol Biol. 2007;367:87-119. (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Template:Methods_Mol_Biol._2007;367:87-119.&amp;action=edit&amp;redlink=1">Template:Methods Mol Biol. 2007;367:87-119.</a> Three such programs are MASCOT &lt;<a class="external free" href="http://www.matrixscience.com/" rel="nofollow">http://www.matrixscience.com/</a>&gt;, PeptideMass &lt;<a class="external free" href="http://web.expasy.org/peptide_mass/" rel="nofollow">http://web.expasy.org/peptide_mass/</a>&gt;, and SPIRE (<a class="external free" href="https://www.proteinspire.org/SPIRE/" rel="nofollow">https://www.proteinspire.org/SPIRE/</a>).</p>
 
<h3><span id="Protein_structure" class="mw-headline">Protein structure</span></h3>
 
<div class="hatnote relarticle mainarticle">Main article: <a title="Protein structure prediction" href="http://en.wikipedia.org/wiki/Protein_structure_prediction">Protein structure prediction</a></div>
 
<p>The <a title="Biomolecular structure" href="http://en.wikipedia.org/wiki/Biomolecular_structure">biomolecular structure</a> forms the 3D configuration of the protein. Understanding the protein's structure aids in identification of the protein's interactions and function. It used to be that the 3D structure of proteins could only be determined using <a title="X-ray crystallography" href="http://en.wikipedia.org/wiki/X-ray_crystallography">X-ray crystallography</a> and <a title="NMR spectroscopy" class="mw-redirect" href="http://en.wikipedia.org/wiki/NMR_spectroscopy">NMR spectroscopy</a>. Now, through bioinformatics, there are computer programs that can predict and model the structure of proteins. These programs use the chemical properties of amino acids and structural properties of known proteins to predict the 3D model of sample proteins. This also allows scientists to take a look at protein interactions on a larger scale. In addition, biomedical engineers are developing methods to factor in the flexibility of protein structures to make comparisons and predictions.<sup id="cite_ref-38" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-38"><span>[</span>38<span>]</span></a></sup></p>
 
<h3><span id="Post-translational_modifications_2" class="mw-headline">Post-translational modifications</span></h3>
 
<p>Unfortunately, most programs available for protein analysis are not written for proteins that have undergone <a title="Post-translational modifications" class="mw-redirect" href="http://en.wikipedia.org/wiki/Post-translational_modifications">post-translational modifications</a>.<sup id="cite_ref-39" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-39"><span>[</span>39<span>]</span></a></sup> Some programs will accept post-translational modifications to aid in protein identification but then ignore the modification during further protein analysis. It is important to account for these modifications since they can affect the protein's structure. In turn, computational analysis of post-translational modifications has gained the attention of the scientific community. The current post-translational modification programs are only predictive.<sup id="cite_ref-40" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-40"><span>[</span>40<span>]</span></a></sup> Chemists, biologists and computer scientists are working together to create and introduce new pipelines that allow for analysis of post-translational modifications that have been experimentally identified for their effect on the protein's structure and function.</p>
 
<h3><span id="Computational_methods_in_studying_protein_biomarkers" class="mw-headline">Computational methods in studying protein biomarkers</span></h3>
 
<p>One example of the use of bioinformatics and the use of computational methods is the study of protein biomarkers. Computational predictive models<sup id="cite_ref-41" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-41"><span>[</span>41<span>]</span></a></sup> have shown that extensive and diverse feto-maternal protein trafficking occurs during pregnancy and can be readily detected non-invasively in maternal whole blood. This computational approach circumvented a major limitation, the abundance of maternal proteins interfering with the detection of <a title="Fetal protein" href="http://en.wikipedia.org/wiki/Fetal_protein">fetal proteins</a>, to fetal proteomic analysis of maternal blood. Computational models can use fetal gene transcripts previously identified in maternal <a title="Whole blood" href="http://en.wikipedia.org/wiki/Whole_blood">whole blood</a> to create a comprehensive proteomic network of the term <a title="Neonate" class="mw-redirect" href="http://en.wikipedia.org/wiki/Neonate">neonate</a>. Such work shows that the fetal proteins detected in pregnant woman&rsquo;s blood originate from a diverse group of tissues and organs from the developing fetus. The proteomic networks contain many <a title="Biomarker (medicine)" href="http://en.wikipedia.org/wiki/Biomarker_(medicine)">biomarkers</a> that are proxies for development and illustrate the potential clinical application of this technology as a way to monitor normal and abnormal fetal development.</p>
 
<p>An information theoretic framework has also been introduced for <a title="Biomarker (medicine)" href="http://en.wikipedia.org/wiki/Biomarker_(medicine)">biomarker</a> discovery, integrating biofluid and tissue information.<sup id="cite_ref-42" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-42"><span>[</span>42<span>]</span></a></sup> This new approach takes advantage of functional synergy between certain biofluids and tissues with the potential for clinically significant findings not possible if tissues and biofluids were considered individually. By conceptualizing tissue-biofluid as information channels, significant biofluid proxies can be identified and then used for guided development of clinical diagnostics. Candidate biomarkers are then predicted based on information transfer criteria across the tissue-biofluid channels. Significant biofluid-tissue relationships can be used to prioritize clinical validation of biomarkers.<sup class="noprint Inline-Template Template-Fact" style="white-space: nowrap">[<i><a title="Wikipedia:Citation needed" href="http://en.wikipedia.org/wiki/Wikipedia:Citation_needed"><span title="This claim needs references to reliable sources. (January 2012)">citation needed</span></a></i>]</sup></p>
 
<h2><span id="Emerging_trends_in_proteomics" class="mw-headline">Emerging trends in proteomics</span></h2>
 
<p>A number of emerging concepts have the potential to improve current features of proteomics. Obtaining absolute quantification of proteins and monitoring post-translational modifications are the two tasks that impacts the understanding of protein function in healthy and diseased cells. Advances in quantitative proteomics would clearly enable more in-depth analysis of cellular systems. For many cellular events, the protein concentrations do not change; rather, their function is modulated by post-transitional modifications (PTM). Methods of monitoring PTM are an underdeveloped area in proteomics. Selecting a particular subset of protein for analysis substantially reduces protein complexity, making it advantageous for diagnostic purposes where blood is the starting material. Another important aspect of proteomics, yet not addressed, is that proteomics methods should focus on studying proteins in the context of the environment. The increasing use of chemical cross linkers, introduced into living cells to fix protein-protein, protein-DNA and other interactions, may ameliorate this problem partially. The challenge is to identify suitable methods of preserving relevant interactions. Another goal for studying protein is to develop more sophisticated methods to image proteins and other molecules in living cells and real time.<sup id="cite_ref-Weston_.26_Hood_2004_37-5" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Weston_.26_Hood_2004-37"><span>[</span>37<span>]</span></a></sup></p>
 
<h3><span id="Human_plasma_proteome" class="mw-headline">Human plasma proteome</span></h3>
 
<p>Characterizing the human plasma proteome has become a major goal in the proteomics arena. The plasma proteome is without doubt the most complex proteome in the human body. It contains immunoglobulin, cytokines, protein hormones, and secreted proteins indicative of infection on top of resident, hemostatic proteins. It also contains tissue leakage proteins due to the blood circulation through different tissues in the body. The blood thus contains information on the physiological state of all tissues and, combined with its accessibility, makes the blood proteome invaluable for medical purposes. Even with the recent advancements in proteomics, characterizing the proteome of blood plasma is a daunting challenge.</p>
 
<p>Temporal and spatial dynamics further complicate the study of human plasma proteome. The turnover of some proteins is quite faster than others and the protein content of an artery may substantially vary from that of a vein. All these differences make even the simplest proteomic task of cataloging the proteome seem out of reach. To tackle this problem, priorities needs to be established. Capturing the most meaningful subset of proteins among the entire proteome to generate a diagnostic tool is one such priority. Secondly, since cancer is associated with enhanced glycosylation of proteins, methods that focus on this part of proteins will also be useful. Again: multiparameter analysis best reveals a pathological state. As these technologies improve, the disease profiles should be continually related to respective gene expression changes.<sup id="cite_ref-Weston_.26_Hood_2004_37-6" class="reference"><a href="http://en.wikipedia.org/wiki/Proteomics#cite_note-Weston_.26_Hood_2004-37"><span>[</span>37<span>]</span></a></sup></p>
 
 
<h2><span id="See_also" class="mw-headline">See also</span></h2>
 
<h2><span id="See_also" class="mw-headline">See also</span></h2>
<div class="noprint portal tright" style="border-top: rgb(170,170,170) 1px solid; border-right: rgb(170,170,170) 1px solid; border-bottom: rgb(170,170,170) 1px solid; margin: 0.5em 0px 0.5em 1em; border-left: rgb(170,170,170) 1px solid; border-image: none">
 
<table style="font-size: 85%; max-width: 175px; background: rgb(249,249,249); line-height: 110%">
 
    <tbody>
 
        <tr style="vertical-align: middle">
 
            <td style="text-align: center"><a class="image" href="http://en.wikipedia.org/wiki/File:Issoria_lathonia.jpg"><img class="noviewer" alt="Portal icon" src="http://upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Issoria_lathonia.jpg/32px-Issoria_lathonia.jpg" width="32" height="23" data-file-width="629" data-file-height="445" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Issoria_lathonia.jpg/48px-Issoria_lathonia.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Issoria_lathonia.jpg/64px-Issoria_lathonia.jpg 2x" /></a></td>
 
            <td style="vertical-align: middle; font-weight: bold; padding-bottom: 0px; font-style: italic; padding-top: 0px; padding-left: 0.2em; padding-right: 0.2em"><a title="Portal:Biology" href="http://en.wikipedia.org/wiki/Portal:Biology">Biology portal</a></td>
 
        </tr>
 
        <tr style="vertical-align: middle">
 
            <td style="text-align: center"><a class="image" href="http://en.wikipedia.org/wiki/File:Rod_of_Asclepius2.svg"><img class="noviewer" alt="Portal icon" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Rod_of_Asclepius2.svg/8px-Rod_of_Asclepius2.svg.png" width="8" height="28" data-file-width="251" data-file-height="804" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Rod_of_Asclepius2.svg/13px-Rod_of_Asclepius2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Rod_of_Asclepius2.svg/17px-Rod_of_Asclepius2.svg.png 2x" /></a></td>
 
            <td style="vertical-align: middle; font-weight: bold; padding-bottom: 0px; font-style: italic; padding-top: 0px; padding-left: 0.2em; padding-right: 0.2em"><a title="Portal:Medicine" href="http://en.wikipedia.org/wiki/Portal:Medicine">Medicine portal</a></td>
 
        </tr>
 
        <tr style="vertical-align: middle">
 
            <td style="text-align: center"><a class="image" href="http://en.wikipedia.org/wiki/File:TPI1_structure.png"><img class="noviewer" alt="Portal icon" src="http://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/TPI1_structure.png/32px-TPI1_structure.png" width="32" height="20" data-file-width="1452" data-file-height="914" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/TPI1_structure.png/48px-TPI1_structure.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/TPI1_structure.png/64px-TPI1_structure.png 2x" /></a></td>
 
            <td style="vertical-align: middle; font-weight: bold; padding-bottom: 0px; font-style: italic; padding-top: 0px; padding-left: 0.2em; padding-right: 0.2em"><a title="Portal:Molecular and cellular biology" href="http://en.wikipedia.org/wiki/Portal:Molecular_and_cellular_biology">Molecular and cellular biology portal</a></td>
 
        </tr>
 
    </tbody>
 
</table>
 
</div>
 
<div class="div-col columns column-count column-count-2" style="column-count: 2; -moz-column-count: 2; -webkit-column-count: 2">
 
 
<ul>
 
<ul>
     <li><a title="Activity based proteomics" class="mw-redirect" href="http://en.wikipedia.org/wiki/Activity_based_proteomics">Activity based proteomics</a></li>
+
     <li><a title="Metabolome" href="http://en.wikipedia.org/wiki/Metabolome">Metabolome</a></li>
 +
    <li><a title="Cytome" class="mw-redirect" href="http://en.wikipedia.org/wiki/Cytome">Cytome</a></li>
 
     <li><a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics">Bioinformatics</a></li>
 
     <li><a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics">Bioinformatics</a></li>
    <li><a title="Bottom-up proteomics" href="http://en.wikipedia.org/wiki/Bottom-up_proteomics">Bottom-up proteomics</a></li>
 
    <li><a title="Cytomics" href="http://en.wikipedia.org/wiki/Cytomics">Cytomics</a></li>
 
    <li><a title="Functional genomics" href="http://en.wikipedia.org/wiki/Functional_genomics">Functional genomics</a></li>
 
    <li><a title="Genomics" href="http://en.wikipedia.org/wiki/Genomics">Genomics</a></li>
 
    <li><a title="Heat stabilization" href="http://en.wikipedia.org/wiki/Heat_stabilization">Heat stabilization</a></li>
 
    <li><a title="Human proteome project" href="http://en.wikipedia.org/wiki/Human_proteome_project">Human proteome project</a></li>
 
    <li><a title="Immunomics" href="http://en.wikipedia.org/wiki/Immunomics">Immunomics</a></li>
 
    <li><a title="Immunoproteomics" href="http://en.wikipedia.org/wiki/Immunoproteomics">Immunoproteomics</a></li>
 
    <li><a title="Lipidomics" href="http://en.wikipedia.org/wiki/Lipidomics">Lipidomics</a></li>
 
    <li><a title="List of biological databases" href="http://en.wikipedia.org/wiki/List_of_biological_databases">List of biological databases</a></li>
 
 
     <li><a title="List of omics topics in biology" href="http://en.wikipedia.org/wiki/List_of_omics_topics_in_biology">List of omics topics in biology</a></li>
 
     <li><a title="List of omics topics in biology" href="http://en.wikipedia.org/wiki/List_of_omics_topics_in_biology">List of omics topics in biology</a></li>
     <li><a title="Metabolomics" href="http://en.wikipedia.org/wiki/Metabolomics">Metabolomics</a></li>
+
     <li><a title="Plant Proteome Database" href="http://en.wikipedia.org/wiki/Plant_Proteome_Database">Plant Proteome Database</a></li>
    <li><a title="PEGylation" href="http://en.wikipedia.org/wiki/PEGylation">PEGylation</a></li>
+
     <li><a title="Transcriptome" href="http://en.wikipedia.org/wiki/Transcriptome">Transcriptome</a></li>
    <li><a title="Phosphoproteomics" href="http://en.wikipedia.org/wiki/Phosphoproteomics">Phosphoproteomics</a></li>
+
     <li><a title="Interactome" href="http://en.wikipedia.org/wiki/Interactome">Interactome</a></li>
    <li><a title="Proteogenomics" href="http://en.wikipedia.org/wiki/Proteogenomics">Proteogenomics</a></li>
+
     <li><a title="Human Proteome Project" class="mw-redirect" href="http://en.wikipedia.org/wiki/Human_Proteome_Project">Human Proteome Project</a></li>
    <li><a title="Proteomic chemistry" class="mw-redirect" href="http://en.wikipedia.org/wiki/Proteomic_chemistry">Proteomic chemistry</a></li>
 
    <li><a title="Secretomics" href="http://en.wikipedia.org/wiki/Secretomics">Secretomics</a></li>
 
    <li><a title="Shotgun proteomics" href="http://en.wikipedia.org/wiki/Shotgun_proteomics">Shotgun proteomics</a></li>
 
    <li><a title="Top-down proteomics" href="http://en.wikipedia.org/wiki/Top-down_proteomics">Top-down proteomics</a></li>
 
    <li><a title="Systems biology" href="http://en.wikipedia.org/wiki/Systems_biology">Systems biology</a></li>
 
    <li><a title="Transcriptomics" class="mw-redirect" href="http://en.wikipedia.org/wiki/Transcriptomics">Transcriptomics</a></li>
 
    <li><a title="Yeast two-hybrid system" class="mw-redirect" href="http://en.wikipedia.org/wiki/Yeast_two-hybrid_system">Yeast two-hybrid system</a></li>
 
</ul>
 
</div>
 
<h3><span id="Protein_databases" class="mw-headline">Protein databases</span></h3>
 
<ul>
 
    <li><a title="Human Protein Atlas" href="http://en.wikipedia.org/wiki/Human_Protein_Atlas">Human Protein Atlas</a></li>
 
    <li><a title="Human Protein Reference Database" href="http://en.wikipedia.org/wiki/Human_Protein_Reference_Database">Human Protein Reference Database</a></li>
 
     <li><a title="National Center for Biotechnology Information" href="http://en.wikipedia.org/wiki/National_Center_for_Biotechnology_Information">National Center for Biotechnology Information</a> (NCBI)</li>
 
     <li><a title="Protein Data Bank" href="http://en.wikipedia.org/wiki/Protein_Data_Bank">Protein Data Bank</a> (PDB)</li>
 
     <li><a title="Protein Information Resource" href="http://en.wikipedia.org/wiki/Protein_Information_Resource">Protein Information Resource</a> (PIR)</li>
 
    <li><a title="Proteomics Identifications Database" href="http://en.wikipedia.org/wiki/Proteomics_Identifications_Database">Proteomics Identifications Database</a> (PRIDE)</li>
 
    <li><a title="Proteopedia" href="http://en.wikipedia.org/wiki/Proteopedia">Proteopedia</a> The collaborative, 3D encyclopedia of proteins and other molecules</li>
 
    <li><a title="Swiss-Prot" class="mw-redirect" href="http://en.wikipedia.org/wiki/Swiss-Prot">Swiss-Prot</a></li>
 
    <li><a title="UniProt" href="http://en.wikipedia.org/wiki/UniProt">UniProt</a></li>
 
</ul>
 
<h3><span id="Research_centers" class="mw-headline">Research centers</span></h3>
 
<ul>
 
    <li><a title="European Bioinformatics Institute" href="http://en.wikipedia.org/wiki/European_Bioinformatics_Institute">European Bioinformatics Institute</a></li>
 
    <li><a title="Netherlands Proteomics Centre" href="http://en.wikipedia.org/wiki/Netherlands_Proteomics_Centre">Netherlands Proteomics Centre</a> (NPC)</li>
 
 
</ul>
 
</ul>
 
<h2><span id="References" class="mw-headline">References</span></h2>
 
<h2><span id="References" class="mw-headline">References</span></h2>
<div class="reflist columns references-column-count references-column-count-2" style="list-style-type: decimal; column-count: 2; -moz-column-count: 2; -webkit-column-count: 2">
+
<div class="reflist" style="list-style-type: decimal">
 
<ol class="references">
 
<ol class="references">
    <li id="cite_note-pmid9740045-1"><span class="mw-cite-backlink"><b><a href="http://en.wikipedia.org
+
    <li id
 
</ol>
 
</ol>
</div>
 
<h2><span id="Bibliography" class="mw-headline">Bibliography</span></h2>
 
<div class="refbegin columns references-column-count references-column-count-2" style="column-count: 2; -moz-column-count: 2; -webkit-column-count: 2">
 
<ul>
 
    <li>Ceciliani F, Eckersall D, Burchmore R, Lecchi C. <a class="external text" href="http://vet.sagepub.com/content/51/2/351.long" rel="nofollow">Proteomics in veterinary medicine: applications and trends in disease pathogenesis and diagnostics</a>. Vet Pathol. 2014 Mar;51(2):351-62.</li>
 
    <li>Belhajjame, K. et al. <a class="external text" href="http://www.allhands.org.uk/2005/proceedings/papers/525.pdf" rel="nofollow">Proteome Data Integration: Characteristics and Challenges</a>. Proceedings of the UK e-Science All Hands Meeting, <a class="internal mw-magiclink-isbn" href="http://en.wikipedia.org/wiki/Special:BookSources/1904425534">ISBN 1-904425-53-4</a>, September 2005, Nottingham, UK.</li>
 
    <li><span class="citation book">Twyman RM (2004). <i>Principles Of Proteomics (Advanced Text Series)</i>. Oxford, UK: BIOS Scientific Publishers. <a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a>&nbsp;<a title="Special:BookSources/1-85996-273-4" href="http://en.wikipedia.org/wiki/Special:BookSources/1-85996-273-4">1-85996-273-4</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.aulast=Twyman+RM&amp;rft.au=Twyman+RM&amp;rft.btitle=Principles+Of+Proteomics+%28Advanced+Text+Series%29&amp;rft.date=2004&amp;rft.genre=book&amp;rft.isbn=1-85996-273-4&amp;rft.place=Oxford%2C+UK&amp;rft.pub=BIOS+Scientific+Publishers&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display: none">&nbsp;</span></span> (covers almost all branches of proteomics)</li>
 
    <li><span class="citation book">Naven T, Westermeier R (2002). <i>Proteomics in Practice: A Laboratory Manual of Proteome Analysis</i>. Weinheim: Wiley-VCH. <a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a>&nbsp;<a title="Special:BookSources/3-527-30354-5" href="http://en.wikipedia.org/wiki/Special:BookSources/3-527-30354-5">3-527-30354-5</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.aulast=Naven+T%2C+Westermeier+R&amp;rft.au=Naven+T%2C+Westermeier+R&amp;rft.btitle=Proteomics+in+Practice%3A+A+Laboratory+Manual+of+Proteome+Analysis&amp;rft.date=2002&amp;rft.genre=book&amp;rft.isbn=3-527-30354-5&amp;rft.place=Weinheim&amp;rft.pub=Wiley-VCH&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display: none">&nbsp;</span></span> (focused on 2D-gels, good on detail)</li>
 
    <li><span class="citation book">Liebler DC (2002). <i>Introduction to proteomics: tools for the new biology</i>. Totowa, NJ: Humana Press. <a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a>&nbsp;<a title="Special:BookSources/0-89603-992-7" href="http://en.wikipedia.org/wiki/Special:BookSources/0-89603-992-7">0-89603-992-7</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.aulast=Liebler+DC&amp;rft.au=Liebler+DC&amp;rft.btitle=Introduction+to+proteomics%3A+tools+for+the+new+biology&amp;rft.date=2002&amp;rft.genre=book&amp;rft.isbn=0-89603-992-7&amp;rft.place=Totowa%2C+NJ&amp;rft.pub=Humana+Press&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display: none">&nbsp;</span></span> <a class="internal mw-magiclink-isbn" href="http://en.wikipedia.org/wiki/Special:BookSources/0585418799">ISBN 0-585-41879-9</a> (electronic, on Netlibrary?), <a class="internal mw-magiclink-isbn" href="http://en.wikipedia.org/wiki/Special:BookSources/0896039919">ISBN 0-89603-991-9</a> hbk</li>
 
    <li><span class="citation book">Wilkins MR, Williams KL, Appel RD, Hochstrasser DF (1997). <i>Proteome Research: New Frontiers in Functional Genomics (Principles and Practice)</i>. Berlin: Springer. <a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a>&nbsp;<a title="Special:BookSources/3-540-62753-7" href="http://en.wikipedia.org/wiki/Special:BookSources/3-540-62753-7">3-540-62753-7</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.aulast=Wilkins+MR%2C+Williams+KL%2C+Appel+RD%2C+Hochstrasser+DF&amp;rft.au=Wilkins+MR%2C+Williams+KL%2C+Appel+RD%2C+Hochstrasser+DF&amp;rft.btitle=Proteome+Research%3A+New+Frontiers+in+Functional+Genomics+%28Principles+and+Practice%29&amp;rft.date=1997&amp;rft.genre=book&amp;rft.isbn=3-540-62753-7&amp;rft.place=Berlin&amp;rft.pub=Springer&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display: none">&nbsp;</span></span></li>
 
    <li><span class="citation journal">Arora PS, Yamagiwa H, Srivastava A, Bolander ME, Sarkar G; Yamagiwa; Srivastava; Bolander; Sarkar (2005). &quot;Comparative evaluation of two two-dimensional gel electrophoresis image analysis software applications using synovial fluids from patients with joint disease&quot;. <i>J Orthop Sci</i> <b>10</b> (2): 160&ndash;6. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" href="http://dx.doi.org/10.1007%2Fs00776-004-0878-0" rel="nofollow">10.1007/s00776-004-0878-0</a>. <a title="PubMed Identifier" class="mw-redirect" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/15815863" rel="nofollow">15815863</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.atitle=Comparative+evaluation+of+two+two-dimensional+gel+electrophoresis+image+analysis+software+applications+using+synovial+fluids+from+patients+with+joint+disease&amp;rft.au=Arora+PS%2C+Yamagiwa+H%2C+Srivastava+A%2C+Bolander+ME%2C+Sarkar+G&amp;rft.au=Bolander&amp;rft.aulast=Arora+PS%2C+Yamagiwa+H%2C+Srivastava+A%2C+Bolander+ME%2C+Sarkar+G&amp;rft.au=Sarkar&amp;rft.au=Srivastava&amp;rft.au=Yamagiwa&amp;rft.date=2005&amp;rft.genre=article&amp;rft_id=info%3Adoi%2F10.1007%2Fs00776-004-0878-0&amp;rft_id=info%3Apmid%2F15815863&amp;rft.issue=2&amp;rft.jtitle=J+Orthop+Sci&amp;rft.pages=160-6&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.volume=10" class="Z3988"><span style="display: none">&nbsp;</span></span></li>
 
    <li>Rediscovering Biology Online Textbook. Unit 2 Proteins and Proteomics. 1997&ndash;2006.</li>
 
    <li><span class="citation book">Weaver RF (2005). <i>Molecular biology</i> (3rd ed.). New York: McGraw-Hill. pp.&nbsp;840&ndash;9. <a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a>&nbsp;<a title="Special:BookSources/0-07-284611-9" href="http://en.wikipedia.org/wiki/Special:BookSources/0-07-284611-9">0-07-284611-9</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.aulast=Weaver+RF&amp;rft.au=Weaver+RF&amp;rft.btitle=Molecular+biology&amp;rft.date=2005&amp;rft.edition=3rd&amp;rft.genre=book&amp;rft.isbn=0-07-284611-9&amp;rft.pages=840-9&amp;rft.place=New+York&amp;rft.pub=McGraw-Hill&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display: none">&nbsp;</span></span></li>
 
    <li><span class="citation book">Reece J, Campbell N (2002). <i>Biology</i> (6th ed.). San Francisco: Benjamin Cummings. pp.&nbsp;392&ndash;3. <a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a>&nbsp;<a title="Special:BookSources/0-8053-6624-5" href="http://en.wikipedia.org/wiki/Special:BookSources/0-8053-6624-5">0-8053-6624-5</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.aulast=Reece+J%2C+Campbell+N&amp;rft.au=Reece+J%2C+Campbell+N&amp;rft.btitle=Biology&amp;rft.date=2002&amp;rft.edition=6th&amp;rft.genre=book&amp;rft.isbn=0-8053-6624-5&amp;rft.pages=392-3&amp;rft.place=San+Francisco&amp;rft.pub=Benjamin+Cummings&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display: none">&nbsp;</span></span></li>
 
    <li><span class="citation journal">Hye A; Lynham S; Thambisetty M et al. (November 2006). &quot;Proteome-based plasma biomarkers for Alzheimer's disease&quot;. <i>Brain</i> <b>129</b> (Pt 11): 3042&ndash;50. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" href="http://dx.doi.org/10.1093%2Fbrain%2Fawl279" rel="nofollow">10.1093/brain/awl279</a>. <a title="PubMed Identifier" class="mw-redirect" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/17071923" rel="nofollow">17071923</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.atitle=Proteome-based+plasma+biomarkers+for+Alzheimer%27s+disease&amp;rft.au=Byers%2C+H.+L.&amp;rft.au=Campbell%2C+J.&amp;rft.au=Causevic%2C+M.&amp;rft.au=Hooper%2C+C.&amp;rft.au=Hye+A&amp;rft.aulast=Hye+A&amp;rft.au=Lynham+S&amp;rft.au=Rijsdijk%2C+F.&amp;rft.au=Tabrizi%2C+S.+J.&amp;rft.au=Thambisetty+M&amp;rft.date=November+2006&amp;rft.genre=article&amp;rft_id=info%3Adoi%2F10.1093%2Fbrain%2Fawl279&amp;rft_id=info%3Apmid%2F17071923&amp;rft.issue=Pt+11&amp;rft.jtitle=Brain&amp;rft.pages=3042-50&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.volume=129" class="Z3988"><span style="display: none">&nbsp;</span></span> <span class="error citation-comment" style="font-size: 100%; display: none">Cite uses deprecated parameter <code style="color: ; border-image: inherit">|author-separator=</code> (<a title="Help:CS1 errors" href="http://en.wikipedia.org/wiki/Help:CS1_errors#deprecated_params">help</a>);</span> <span class="error citation-comment" style="font-size: 100%"><code style="color: ; border-image: inherit">|first10=</code> missing <code style="color: ; border-image: inherit">|last10=</code> in Authors list (<a title="Help:CS1 errors" href="http://en.wikipedia.org/wiki/Help:CS1_errors#first_missing_last">help</a>);</span> <span class="error citation-comment" style="font-size: 100%"><code style="color: ; border-image: inherit">|first11=</code> missing <code style="color: ; border-image: inherit">|last11=</code> in Authors list (<a title="Help:CS1 errors" href="http://en.wikipedia.org/wiki/Help:CS1_errors#first_missing_last">help</a>)</span></li>
 
    <li><span class="citation journal">Perroud B; Lee J; Valkova N et al. (2006). <a class="external text" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665458" rel="nofollow">&quot;Pathway analysis of kidney cancer using proteomics and metabolic profiling&quot;</a>. <i>Mol Cancer</i> <b>5</b>: 64. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" href="http://dx.doi.org/10.1186%2F1476-4598-5-64" rel="nofollow">10.1186/1476-4598-5-64</a>. <a title="PubMed Central" href="http://en.wikipedia.org/wiki/PubMed_Central">PMC</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665458" rel="nofollow">1665458</a>. <a title="PubMed Identifier" class="mw-redirect" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/17123452" rel="nofollow">17123452</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.atitle=Pathway+analysis+of+kidney+cancer+using+proteomics+and+metabolic+profiling&amp;rft.au=Dhirapong%2C+Amy&amp;rft.au=Fiehn%2C+Oliver&amp;rft.au=K%C3%BCltz%2C+Dietmar&amp;rft.aulast=Perroud+B&amp;rft.au=Lee+J&amp;rft.au=Lin%2C+Pei-Yin&amp;rft.au=Perroud+B&amp;rft.au=Valkova+N&amp;rft.au=Weiss%2C+Robert+H&amp;rft.date=2006&amp;rft.genre=article&amp;rft_id=%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1665458&amp;rft_id=info%3Adoi%2F10.1186%2F1476-4598-5-64&amp;rft_id=info%3Apmc%2F1665458&amp;rft_id=info%3Apmid%2F17123452&amp;rft.jtitle=Mol+Cancer&amp;rft.pages=64&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.volume=5" class="Z3988"><span style="display: none">&nbsp;</span></span> <span class="error citation-comment" style="font-size: 100%; display: none">Cite uses deprecated parameter <code style="color: ; border-image: inherit">|author-separator=</code> (<a title="Help:CS1 errors" href="http://en.wikipedia.org/wiki/Help:CS1_errors#deprecated_params">help</a>)</span></li>
 
    <li><span class="citation journal">Yohannes E, Chang J, Christ GJ, Davies KP, Chance MR; Chang; Christ; Davies; Chance (July 2008). <a class="external text" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493381" rel="nofollow">&quot;Proteomics analysis identifies molecular targets related to diabetes mellitus-associated bladder dysfunction&quot;</a>. <i>Mol. Cell Proteomics</i> <b>7</b> (7): 1270&ndash;85. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" href="http://dx.doi.org/10.1074%2Fmcp.M700563-MCP200" rel="nofollow">10.1074/mcp.M700563-MCP200</a>. <a title="PubMed Central" href="http://en.wikipedia.org/wiki/PubMed_Central">PMC</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493381" rel="nofollow">2493381</a>. <a title="PubMed Identifier" class="mw-redirect" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/18337374" rel="nofollow">18337374</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.atitle=Proteomics+analysis+identifies+molecular+targets+related+to+diabetes+mellitus-associated+bladder+dysfunction&amp;rft.au=Chance&amp;rft.au=Chang&amp;rft.au=Christ&amp;rft.au=Davies&amp;rft.aulast=Yohannes+E%2C+Chang+J%2C+Christ+GJ%2C+Davies+KP%2C+Chance+MR&amp;rft.au=Yohannes+E%2C+Chang+J%2C+Christ+GJ%2C+Davies+KP%2C+Chance+MR&amp;rft.date=July+2008&amp;rft.genre=article&amp;rft_id=%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2493381&amp;rft_id=info%3Adoi%2F10.1074%2Fmcp.M700563-MCP200&amp;rft_id=info%3Apmc%2F2493381&amp;rft_id=info%3Apmid%2F18337374&amp;rft.issue=7&amp;rft.jtitle=Mol.+Cell+Proteomics&amp;rft.pages=1270-85&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.volume=7" class="Z3988"><span style="display: none">&nbsp;</span></span></li>
 
    <li><span class="citation journal">Macaulay IC, Carr P, Gusnanto A, Ouwehand WH, Fitzgerald D, Watkins NA; Carr; Gusnanto; Ouwehand; Fitzgerald; Watkins (December 2005). <a class="external text" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1297260" rel="nofollow">&quot;Platelet genomics and proteomics in human health and disease&quot;</a>. <i>J Clin Invest.</i> <b>115</b> (12): 3370&ndash;7. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" href="http://dx.doi.org/10.1172%2FJCI26885" rel="nofollow">10.1172/JCI26885</a>. <a title="PubMed Central" href="http://en.wikipedia.org/wiki/PubMed_Central">PMC</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1297260" rel="nofollow">1297260</a>. <a title="PubMed Identifier" class="mw-redirect" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/16322782" rel="nofollow">16322782</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.atitle=Platelet+genomics+and+proteomics+in+human+health+and+disease&amp;rft.au=Carr&amp;rft.au=Fitzgerald&amp;rft.au=Gusnanto&amp;rft.aulast=Macaulay+IC%2C+Carr+P%2C+Gusnanto+A%2C+Ouwehand+WH%2C+Fitzgerald+D%2C+Watkins+NA&amp;rft.au=Macaulay+IC%2C+Carr+P%2C+Gusnanto+A%2C+Ouwehand+WH%2C+Fitzgerald+D%2C+Watkins+NA&amp;rft.au=Ouwehand&amp;rft.au=Watkins&amp;rft.date=December+2005&amp;rft.genre=article&amp;rft_id=%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1297260&amp;rft_id=info%3Adoi%2F10.1172%2FJCI26885&amp;rft_id=info%3Apmc%2F1297260&amp;rft_id=info%3Apmid%2F16322782&amp;rft.issue=12&amp;rft.jtitle=J+Clin+Invest.&amp;rft.pages=3370-7&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.volume=115" class="Z3988"><span style="display: none">&nbsp;</span></span></li>
 
    <li><span class="citation journal">Rogers MA; Clarke P; Noble J et al. (15 October 2003). <a class="external text" href="http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&amp;pmid=14583499" rel="nofollow">&quot;Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility&quot;</a>. <i>Cancer Res.</i> <b>63</b> (20): 6971&ndash;83. <a title="PubMed Identifier" class="mw-redirect" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/14583499" rel="nofollow">14583499</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.atitle=Proteomic+profiling+of+urinary+proteins+in+renal+cancer+by+surface+enhanced+laser+desorption+ionization+and+neural-network+analysis%3A+identification+of+key+issues+affecting+potential+clinical+utility&amp;rft.au=Banks%2C+RE&amp;rft.au=Clarke+P&amp;rft.aulast=Rogers+MA&amp;rft.au=Munro%2C+NP&amp;rft.au=Noble+J&amp;rft.au=Paul%2C+A&amp;rft.au=Rogers+MA&amp;rft.au=Selby%2C+PJ&amp;rft.date=15+October+2003&amp;rft.genre=article&amp;rft_id=http%3A%2F%2Fcancerres.aacrjournals.org%2Fcgi%2Fpmidlookup%3Fview%3Dlong%26pmid%3D14583499&amp;rft_id=info%3Apmid%2F14583499&amp;rft.issue=20&amp;rft.jtitle=Cancer+Res.&amp;rft.pages=6971-83&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.volume=63" class="Z3988"><span style="display: none">&nbsp;</span></span> <span class="error citation-comment" style="font-size: 100%; display: none">Cite uses deprecated parameter <code style="color: ; border-image: inherit">|author-separator=</code> (<a title="Help:CS1 errors" href="http://en.wikipedia.org/wiki/Help:CS1_errors#deprecated_params">help</a>)</span></li>
 
    <li><span class="citation journal">Vasan RS (May 2006). &quot;Biomarkers of cardiovascular disease: molecular basis and practical considerations&quot;. <i>Circulation</i> <b>113</b> (19): 2335&ndash;62. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" href="http://dx.doi.org/10.1161%2FCIRCULATIONAHA.104.482570" rel="nofollow">10.1161/CIRCULATIONAHA.104.482570</a>. <a title="PubMed Identifier" class="mw-redirect" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/16702488" rel="nofollow">16702488</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.atitle=Biomarkers+of+cardiovascular+disease%3A+molecular+basis+and+practical+considerations&amp;rft.aulast=Vasan+RS&amp;rft.au=Vasan+RS&amp;rft.date=May+2006&amp;rft.genre=article&amp;rft_id=info%3Adoi%2F10.1161%2FCIRCULATIONAHA.104.482570&amp;rft_id=info%3Apmid%2F16702488&amp;rft.issue=19&amp;rft.jtitle=Circulation&amp;rft.pages=2335-62&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.volume=113" class="Z3988"><span style="display: none">&nbsp;</span></span></li>
 
    <li><a class="external text" href="http://medlib.med.utah.edu/WebPath/TUTORIAL/MYOCARD/MYOCARD.html" rel="nofollow">&quot;Myocardial Infarction&quot;</a>. (Retrieved 29 November 2006)</li>
 
    <li>Introduction to Antibodies&nbsp;&ndash; <a class="external text" href="http://www.chemicon.com/resource/ANT101/a2C.asp" rel="nofollow">Enzyme-Linked Immunosorbent Assay (ELISA)</a>. (Retrieved 29 November 2006)</li>
 
    <li><span class="citation journal">Decramer, Stephane; Wittke, Stefan; Mischak, Harald; Z&uuml;rbig, Petra; Walden, Michael; Bouissou, Fran&ccedil;ois; Bascands, Jean-Loup; Schanstra, Joost P (2006). &quot;Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis&quot;. <i>Nature Medicine</i> <b>12</b> (4): 398&ndash;400. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" href="http://dx.doi.org/10.1038%2Fnm1384" rel="nofollow">10.1038/nm1384</a>. <a title="PubMed Identifier" class="mw-redirect" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/16550189" rel="nofollow">16550189</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.atitle=Predicting+the+clinical+outcome+of+congenital+unilateral+ureteropelvic+junction+obstruction+in+newborn+by+urinary+proteome+analysis&amp;rft.au=Bascands%2C+Jean-Loup&amp;rft.au=Bouissou%2C+Fran%C3%A7ois&amp;rft.au=Decramer%2C+Stephane&amp;rft.aufirst=Stephane&amp;rft.aulast=Decramer&amp;rft.au=Mischak%2C+Harald&amp;rft.au=Schanstra%2C+Joost+P&amp;rft.au=Walden%2C+Michael&amp;rft.au=Wittke%2C+Stefan&amp;rft.au=Z%C3%BCrbig%2C+Petra&amp;rft.date=2006&amp;rft.genre=article&amp;rft_id=info%3Adoi%2F10.1038%2Fnm1384&amp;rft_id=info%3Apmid%2F16550189&amp;rft.issue=4&amp;rft.jtitle=Nature+Medicine&amp;rft.pages=398-400&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.volume=12" class="Z3988"><span style="display: none">&nbsp;</span></span></li>
 
    <li><span class="citation journal">Mayer U (January 2008). &quot;Protein Information Crawler (PIC): extensive spidering of multiple protein information resources for large protein sets&quot;. <i>Proteomics</i> <b>8</b> (1): 42&ndash;4. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" href="http://dx.doi.org/10.1002%2Fpmic.200700865" rel="nofollow">10.1002/pmic.200700865</a>. <a title="PubMed Identifier" class="mw-redirect" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" href="http://www.ncbi.nlm.nih.gov/pubmed/18095364" rel="nofollow">18095364</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AProteomics&amp;rft.atitle=Protein+Information+Crawler+%28PIC%29%3A+extensive+spidering+of+multiple+protein+information+resources+for+large+protein+sets&amp;rft.aulast=Mayer+U&amp;rft.au=Mayer+U&amp;rft.date=January+2008&amp;rft.genre=article&amp;rft_id=info%3Adoi%2F10.1002%2Fpmic.200700865&amp;rft_id=info%3Apmid%2F18095364&amp;rft.issue=1&amp;rft.jtitle=Proteomics&amp;rft.pages=42-4&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.volume=8" class="Z3988"><span style="display: none">&nbsp;</span></span></li>
 
    <li>J&ouml;rg von Hagen, VCH-Wiley 2008 <i>Proteomics Sample Preparation. <a class="internal mw-magiclink-isbn" href="http://en.wikipedia.org/wiki/Special:BookSources/9783527317967">ISBN 978-3-527-31796-7</a></i></li>
 
</ul>
 
 
</div>
 
</div>
 
<h2><span id="External_links" class="mw-headline">External links</span></h2>
 
<h2><span id="External_links" class="mw-headline">External links</span></h2>
 
<ul>
 
<ul>
     <li><a class="external text" href="https://www.dmoz.org//Science/Biology/Biochemistry_and_Molecular_Biology/Biomolecules/Proteins_and_Enzymes/Proteomics" rel="nofollow">Proteomics</a> at <a title="DMOZ" href="http://en.wikipedia.org/wiki/DMOZ">DMOZ</a></li>
+
     <li><a class="external text" href="http://pir.georgetown.edu/" rel="nofollow">PIR database</a></li>
 +
    <li><a class="external text" href="http://www.uniprot.org/" rel="nofollow">UniProt database</a></li>
 +
    <li><a class="external text" href="http://pfam.sanger.ac.uk/" rel="nofollow">Pfam database</a></li>
 
</ul>
 
</ul>
<table class="mbox-small plainlinks sistersitebox" style="border-top: rgb(170,170,170) 1px solid; border-right: rgb(170,170,170) 1px solid; border-bottom: rgb(170,170,170) 1px solid; border-left: rgb(170,170,170) 1px solid; background-color: rgb(249,249,249); border-image: none">
 
    <tbody>
 
        <tr>
 
            <td class="mbox-image"><img alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Wiktionary-logo-en.svg/37px-Wiktionary-logo-en.svg.png" width="37" height="40" data-file-width="1000" data-file-height="1089" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Wiktionary-logo-en.svg/55px-Wiktionary-logo-en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Wiktionary-logo-en.svg/73px-Wiktionary-logo-en.svg.png 2x" /></td>
 
            <td class="mbox-text plainlist">Look up <i><b><a title="wiktionary:Special:Search/proteomics" class="extiw" href="http://en.wiktionary.org/wiki/Special:Search/proteomics">proteomics</a></b></i> in Wiktionary, the free dictionary.</td>
 
        </tr>
 
    </tbody>
 
</table>
 
<table class="mbox-small plainlinks sistersitebox" style="border-top: rgb(170,170,170) 1px solid; border-right: rgb(170,170,170) 1px solid; border-bottom: rgb(170,170,170) 1px solid; border-left: rgb(170,170,170) 1px solid; background-color: rgb(249,249,249); border-image: none">
 
    <tbody>
 
        <tr>
 
            <td class="mbox-image"><img alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" width="40" height="40" data-file-width="400" data-file-height="400" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" /></td>
 
            <td class="mbox-text plainlist">Wikibooks has more on the topic of: <i><b><a title="wikibooks:Special:Search/Proteomics" class="extiw" href="http://en.wikibooks.org/wiki/Special:Search/Proteomics">Proteomics</a></b></i></td>
 
        </tr>
 
    </tbody>
 
</table>
 
<table class="mbox-small plainlinks sistersitebox" style="border-top: rgb(170,170,170) 1px solid; border-right: rgb(170,170,170) 1px solid; border-bottom: rgb(170,170,170) 1px solid; border-left: rgb(170,170,170) 1px solid; background-color: rgb(249,249,249); border-image: none">
 
    <tbody>
 
        <tr>
 
            <td class="mbox-image"><img alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Wikiversity-logo.svg/40px-Wikiversity-logo.svg.png" width="40" height="32" data-file-width="1000" data-file-height="800" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Wikiversity-logo.svg/60px-Wikiversity-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/91/Wikiversity-logo.svg/80px-Wikiversity-logo.svg.png 2x" /></td>
 
            <td class="mbox-text plainlist">At <a title="Wikiversity" href="http://en.wikipedia.org/wiki/Wikiversity">Wikiversity</a>, you can learn more and teach others about <b>Proteomics</b> at the <a title="v:Topic:Proteomics" class="extiw" href="http://en.wikiversity.org/wiki/Topic:Proteomics">Department of Proteomics</a></td>
 
        </tr>
 
    </tbody>
 
</table>
 
<p><br />
 
&nbsp;</p>
 
 
<table class="navbox" style="border-spacing: 0">
 
<table class="navbox" style="border-spacing: 0">
 
     <tbody>
 
     <tbody>
 
         <tr>
 
         <tr>
 
             <td style="padding-bottom: 2px; padding-top: 2px; padding-left: 2px; padding-right: 2px">
 
             <td style="padding-bottom: 2px; padding-top: 2px; padding-left: 2px; padding-right: 2px">
             <table id="collapsibleTable0" class="nowraplinks collapsible autocollapse navbox-inner" style="background: none transparent scroll repeat 0% 0%; color: ; border-spacing: 0">
+
             <table id="collapsibleTable0" class="nowraplinks hlist collapsible autocollapse navbox-inner" style="background: none transparent scroll repeat 0% 0%; color: ; border-spacing: 0">
 
                 <tbody>
 
                 <tbody>
 
                     <tr>
 
                     <tr>
                         <th class="navbox-title" colspan="2" scope="col"><span class="collapseButton">[<a id="collapseButton0" href="http://en.wikipedia.org/wiki/Proteomics#">hide</a>]</span>
+
                         <th class="navbox-title" style="background: rgb(231,220,195)" colspan="2" scope="col"><span class="collapseButton">[<a id="collapseButton0" href="http://en.wikipedia.org/wiki/Proteome#">hide</a>]</span>
 
                         <div class="plainlinks hlist navbar mini">
 
                         <div class="plainlinks hlist navbar mini">
 
                         <ul>
 
                         <ul>
                             <li class="nv-view"><a title="Template:Genomics" href="http://en.wikipedia.org/wiki/Template:Genomics"><span title="View this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">v</span></a></li>
+
                             <li class="nv-view"><a title="Template:Protein topics" href="http://en.wikipedia.org/wiki/Template:Protein_topics"><span title="View this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">v</span></a></li>
                             <li class="nv-talk"><a title="Template talk:Genomics" href="http://en.wikipedia.org/wiki/Template_talk:Genomics"><span title="Discuss this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">t</span></a></li>
+
                             <li class="nv-talk"><a title="Template talk:Protein topics (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Template_talk:Protein_topics&amp;action=edit&amp;redlink=1"><span title="Discuss this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">t</span></a></li>
                             <li class="nv-edit"><a class="external text" href="http://en.wikipedia.org/w/index.php?title=Template:Genomics&amp;action=edit"><span title="Edit this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">e</span></a></li>
+
                             <li class="nv-edit"><a class="external text" href="http://en.wikipedia.org/w/index.php?title=Template:Protein_topics&amp;action=edit"><span title="Edit this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">e</span></a></li>
 
                         </ul>
 
                         </ul>
 
                         </div>
 
                         </div>
                         <div style="font-size: 110%"><a title="Omics" href="http://en.wikipedia.org/wiki/Omics">Omics</a></div>
+
                         <div style="font-size: 110%"><a title="Protein" href="http://en.wikipedia.org/wiki/Protein">Proteins</a></div>
 
                         </th>
 
                         </th>
 
                     </tr>
 
                     </tr>
Line 373: Line 82:
 
                     </tr>
 
                     </tr>
 
                     <tr>
 
                     <tr>
                         <th class="navbox-group" scope="row"><a title="Genomics" href="http://en.wikipedia.org/wiki/Genomics">Genomics</a></th>
+
                         <th class="navbox-group" style="background-color: antiquewhite" scope="row">Processes</th>
                         <td class="navbox-list navbox-odd hlist" style="width: 100%; padding-bottom: 0px; text-align: left; padding-top: 0px; padding-left: 0px; border-left: 2px solid; padding-right: 0px">
+
                        <td class="navbox-list navbox-odd" style="width: 100%; padding-bottom: 0px; text-align: left; padding-top: 0px; padding-left: 0px; border-left: 2px solid; padding-right: 0px">
 +
                        <div style="padding-bottom: 0em; padding-top: 0em; padding-left: 0.25em; padding-right: 0.25em">
 +
                        <ul>
 +
                            <li><a title="Protein biosynthesis" href="http://en.wikipedia.org/wiki/Protein_biosynthesis">Protein biosynthesis</a></li>
 +
                            <li><a title="Posttranslational modification" class="mw-redirect" href="http://en.wikipedia.org/wiki/Posttranslational_modification">Posttranslational modification</a></li>
 +
                            <li><a title="Protein folding" href="http://en.wikipedia.org/wiki/Protein_folding">Protein folding</a></li>
 +
                            <li><a title="Protein targeting" href="http://en.wikipedia.org/wiki/Protein_targeting">Protein targeting</a></li>
 +
                            <li><strong class="selflink">Proteome</strong></li>
 +
                            <li><a title="Protein methods" href="http://en.wikipedia.org/wiki/Protein_methods">Protein methods</a></li>
 +
                        </ul>
 +
                        </div>
 +
                        </td>
 +
                    </tr>
 +
                    <tr style="height: 2px">
 +
                        <td colspan="2">&nbsp;</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <th class="navbox-group" style="background-color: antiquewhite" scope="row">Structures</th>
 +
                         <td class="navbox-list navbox-even" style="width: 100%; padding-bottom: 0px; text-align: left; padding-top: 0px; padding-left: 0px; border-left: 2px solid; padding-right: 0px">
 
                         <div style="padding-bottom: 0em; padding-top: 0em; padding-left: 0.25em; padding-right: 0.25em">
 
                         <div style="padding-bottom: 0em; padding-top: 0em; padding-left: 0.25em; padding-right: 0.25em">
 
                         <ul>
 
                         <ul>
                             <li><a title="Cognitive genomics" href="http://en.wikipedia.org/wiki/Cognitive_genomics">Cognitive genomics</a></li>
+
                             <li><a title="Protein structure" href="http://en.wikipedia.org/wiki/Protein_structure">Protein structure</a></li>
                             <li><a title="Computational genomics" href="http://en.wikipedia.org/wiki/Computational_genomics">Computational genomics</a></li>
+
                             <li><a title="Protein domain" href="http://en.wikipedia.org/wiki/Protein_domain">Protein structural domains</a></li>
                             <li><a title="Comparative genomics" href="http://en.wikipedia.org/wiki/Comparative_genomics">Comparative genomics</a></li>
+
                             <li><a title="Proteasome" href="http://en.wikipedia.org/wiki/Proteasome">Proteasome</a></li>
                            <li><a title="Functional genomics" href="http://en.wikipedia.org/wiki/Functional_genomics">Functional genomics</a></li>
 
                            <li><a title="Genome project" href="http://en.wikipedia.org/wiki/Genome_project">Genome project</a>
 
                            <ul>
 
                                <li><a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project">Human Genome Project</a></li>
 
                            </ul>
 
                            </li>
 
                            <li><a title="Metagenomics" href="http://en.wikipedia.org/wiki/Metagenomics">Metagenomics</a></li>
 
                            <li><a title="Personal genomics" href="http://en.wikipedia.org/wiki/Personal_genomics">Personal genomics</a></li>
 
                            <li><a title="Social genomics" href="http://en.wikipedia.org/wiki/Social_genomics">Social genomics</a></li>
 
                            <li><a title="Structural genomics" href="http://en.wikipedia.org/wiki/Structural_genomics">Structural genomics</a></li>
 
 
                         </ul>
 
                         </ul>
 
                         </div>
 
                         </div>
Line 398: Line 115:
 
                     </tr>
 
                     </tr>
 
                     <tr>
 
                     <tr>
                         <th class="navbox-group" scope="row">Others</th>
+
                         <th class="navbox-group" style="background-color: antiquewhite" scope="row">Types</th>
                         <td class="navbox-list navbox-even hlist" style="width: 100%; padding-bottom: 0px; text-align: left; padding-top: 0px; padding-left: 0px; border-left: 2px solid; padding-right: 0px">
+
                         <td class="navbox-list navbox-odd" style="width: 100%; padding-bottom: 0px; text-align: left; padding-top: 0px; padding-left: 0px; border-left: 2px solid; padding-right: 0px">
 
                         <div style="padding-bottom: 0em; padding-top: 0em; padding-left: 0.25em; padding-right: 0.25em">
 
                         <div style="padding-bottom: 0em; padding-top: 0em; padding-left: 0.25em; padding-right: 0.25em">
 
                         <ul>
 
                         <ul>
                             <li><a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics">Bioinformatics</a></li>
+
                             <li><a title="List of types of proteins" href="http://en.wikipedia.org/wiki/List_of_types_of_proteins">List of types of proteins</a></li>
                             <li><a title="Cheminformatics" href="http://en.wikipedia.org/wiki/Cheminformatics">Cheminformatics</a></li>
+
                             <li><a title="List of proteins" href="http://en.wikipedia.org/wiki/List_of_proteins">List of proteins</a></li>
                             <li><a title="Chemogenomics" href="http://en.wikipedia.org/wiki/Chemogenomics">Chemogenomics</a></li>
+
                             <li><a title="Membrane protein" href="http://en.wikipedia.org/wiki/Membrane_protein">Membrane protein</a></li>
                             <li><a title="Glycomics" href="http://en.wikipedia.org/wiki/Glycomics">Glycomics</a></li>
+
                             <li><a title="Globular protein" href="http://en.wikipedia.org/wiki/Globular_protein">Globular protein</a>
                            <li><a title="Immunomics" href="http://en.wikipedia.org/wiki/Immunomics">Immunomics</a></li>
 
                            <li><a title="Lipidomics" href="http://en.wikipedia.org/wiki/Lipidomics">Lipidomics</a></li>
 
                            <li><a title="Metabolomics" href="http://en.wikipedia.org/wiki/Metabolomics">Metabolomics</a></li>
 
                            <li><a title="Microbiome" class="mw-redirect" href="http://en.wikipedia.org/wiki/Microbiome">Microbiomics</a></li>
 
                            <li><a title="Nutrigenomics" href="http://en.wikipedia.org/wiki/Nutrigenomics">Nutrigenomics</a></li>
 
                            <li><a title="Paleopolyploidy" href="http://en.wikipedia.org/wiki/Paleopolyploidy">Paleopolyploidy</a></li>
 
                            <li><a title="Pharmacogenetics" href="http://en.wikipedia.org/wiki/Pharmacogenetics">Pharmacogenetics</a></li>
 
                            <li><a title="Pharmacogenomics" href="http://en.wikipedia.org/wiki/Pharmacogenomics">Pharmacogenomics</a></li>
 
                            <li><strong class="selflink">Proteomics</strong>
 
 
                             <ul>
 
                             <ul>
                                 <li><a title="Human Proteome Project" class="mw-redirect" href="http://en.wikipedia.org/wiki/Human_Proteome_Project">Human Proteome Project</a></li>
+
                                 <li><a title="Globulin" href="http://en.wikipedia.org/wiki/Globulin">Globulin</a></li>
 +
                                <li><a title="Albumin" href="http://en.wikipedia.org/wiki/Albumin">Albumin</a></li>
 
                             </ul>
 
                             </ul>
 
                             </li>
 
                             </li>
                             <li><a title="Systems biology" href="http://en.wikipedia.org/wiki/Systems_biology">Systems biology</a></li>
+
                             <li><a title="Scleroprotein" href="http://en.wikipedia.org/wiki/Scleroprotein">Fibrous protein</a></li>
                            <li><a title="Toxicogenomics" href="http://en.wikipedia.org/wiki/Toxicogenomics">Toxicogenomics</a></li>
 
                            <li><a title="Transcriptomics" class="mw-redirect" href="http://en.wikipedia.org/wiki/Transcriptomics">Transcriptomics</a></li>
 
 
                         </ul>
 
                         </ul>
 
                         </div>
 
                         </div>
 +
                        </td>
 +
                    </tr>
 +
                    <tr style="height: 2px">
 +
                        <td colspan="2">&nbsp;</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td class="navbox-abovebelow hlist" style="background: none transparent scroll repeat 0% 0%; padding-bottom: 0px; padding-top: 0px; padding-left: 0px; padding-right: 0px" colspan="2">
 +
                        <table class="nowraplinks navbox-subgroup" style="border-spacing: 0">
 +
                            <tbody>
 +
                                <tr>
 +
                                    <th class="navbox-title" colspan="2" scope="col">
 +
                                    <div class="plainlinks hlist navbar mini">
 +
                                    <ul>
 +
                                        <li class="nv-view"><a title="Template:Protein classification navs" href="http://en.wikipedia.org/wiki/Template:Protein_classification_navs"><span title="View this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">v</span></a></li>
 +
                                        <li class="nv-talk"><a title="Template talk:Protein classification navs (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Template_talk:Protein_classification_navs&amp;action=edit&amp;redlink=1"><span title="Discuss this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">t</span></a></li>
 +
                                        <li class="nv-edit"><a class="external text" href="http://en.wikipedia.org/w/index.php?title=Template:Protein_classification_navs&amp;action=edit"><span title="Edit this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">e</span></a></li>
 +
                                    </ul>
 +
                                    </div>
 +
                                    <div style="font-size: 110%">Index of <a title="Protein" href="http://en.wikipedia.org/wiki/Protein">proteins</a></div>
 +
                                    </th>
 +
                                </tr>
 +
                                <tr style="height: 2px">
 +
                                    <td colspan="2">&nbsp;</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <th class="navbox-group" scope="row">Description</th>
 +
                                    <td class="navbox-list navbox-odd hlist" style="width: 100%; padding-bottom: 0px; text-align: left; padding-top: 0px; padding-left: 0px; border-left: 2px solid; padding-right: 0px">
 +
                                    <div style="padding-bottom: 0em; padding-top: 0em; padding-left: 0.25em; padding-right: 0.25em">
 +
                                    <ul>
 +
                                        <li><a title="Template:Protein topics" href="http://en.wikipedia.org/wiki/Template:Protein_topics">Proteins</a></li>
 +
                                        <li><a title="Template:Membrane proteins" class="mw-redirect" href="http://en.wikipedia.org/wiki/Template:Membrane_proteins">Membrane</a></li>
 +
                                        <li><a title="Template:Globular proteins" href="http://en.wikipedia.org/wiki/Template:Globular_proteins">Globular</a>
 +
                                        <ul>
 +
                                            <li><a title="Template:Enzymes" href="http://en.wikipedia.org/wiki/Template:Enzymes">enzymes</a></li>
 +
                                            <li><a title="Template:Carrier proteins" href="http://en.wikipedia.org/wiki/Template:Carrier_proteins">carrier</a></li>
 +
                                        </ul>
 +
                                        </li>
 +
                                        <li><a title="Template:Antibodies" href="http://en.wikipedia.org/wiki/Template:Antibodies">Antibodies</a></li>
 +
                                        <li><a title="Template:Fibrous proteins" href="http://en.wikipedia.org/wiki/Template:Fibrous_proteins">Fibrous</a></li>
 +
                                    </ul>
 +
                                    </div>
 +
                                    </td>
 +
                                </tr>
 +
                            </tbody>
 +
                        </table>
 +
                        <table class="nowraplinks navbox-subgroup" style="border-spacing: 0">
 +
                            <tbody>
 +
                                <tr>
 +
                                    <th class="navbox-title" colspan="2" scope="col">
 +
                                    <div class="plainlinks hlist navbar mini">
 +
                                    <ul>
 +
                                        <li class="nv-view"><a title="Template:Biochemical families navs" href="http://en.wikipedia.org/wiki/Template:Biochemical_families_navs"><span title="View this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">v</span></a></li>
 +
                                        <li class="nv-talk"><a title="Template talk:Biochemical families navs" href="http://en.wikipedia.org/wiki/Template_talk:Biochemical_families_navs"><span title="Discuss this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">t</span></a></li>
 +
                                        <li class="nv-edit"><a class="external text" href="http://en.wikipedia.org/w/index.php?title=Template:Biochemical_families_navs&amp;action=edit"><span title="Edit this template" style="background: none transparent scroll repeat 0% 0%; border-image: none">e</span></a></li>
 +
                                    </ul>
 +
                                    </div>
 +
                                    <div style="font-size: 110%">Index of <a title="Biochemistry" href="http://en.wikipedia.org/wiki/Biochemistry">biochemical</a> <a title="Template:Metabolism" href="http://en.wikipedia.org/wiki/Template:Metabolism">families</a></div>
 +
                                    </th>
 +
                                </tr>
 +
                                <tr style="height: 2px">
 +
                                    <td colspan="2">&nbsp;</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <th class="navbox-group" scope="row"><a title="Template:Carbohydrates" href="http://en.wikipedia.org/wiki/Template:Carbohydrates">Carbohydrates</a></th>
 +
                                    <td class="navbox-list navbox-odd hlist" style="width: 100%; padding-bottom: 0px; text-align: left; padding-top: 0px; padding-left: 0px; border-left: 2px solid; padding-right: 0px">
 +
                                    <div style="padding-bottom: 0em; padding-top: 0em; padding-left: 0.25em; padding-right: 0.25em">
 +
                                    <ul>
 +
                                        <li><a title="Template:Alcohols" href="http://en.wikipedia.org/wiki/Template:Alcohols">Alcohols</a></li>
 +
                                        <li><a title="Template:Glycoproteins" href="http://en.wikipedia.org/wiki/Template:Glycoproteins">Glycoproteins</a></li>
 +
                                        <li><a title="Template:Glycosides" href="http://en.wikipedia.org/wiki/Template:Glycosides">Glycosides</a></li>
 +
                                    </ul>
 +
                                    </div>
 +
                                    </td>
 +
                                </tr>
 +
                                <tr style="height: 2px">
 +
                                    <td colspan="2">&nbsp;</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <th class="navbox-group" scope="row"><a title="Template:Lipids" href="http://en.wikipedia.org/wiki/Template:Lipids">Lipids</a></th>
 +
                                    <td class="navbox-list navbox-even hlist" style="width: 100%; padding-bottom: 0px; text-align: left; padding-top: 0px; padding-left: 0px; border-left: 2px solid; padding-right: 0px">
 +
                                    <div style="padding-bottom: 0em; padding-top: 0em; padding-left: 0.25em; padding-right: 0.25em">
 +
                                    <ul>
 +
                                        <li><a title="Template:Eicosanoids" href="http://en.wikipedia.org/wiki/Template:Eicosanoids">Eicosanoids</a></li>
 +
                                        <li><a title="Template:Fatty acids" href="http://en.wikipedia.org/wiki/Template:Fatty_acids">Fatty acids</a>
 +
                                        <ul>
 +
                                            <li><a title="Template:Fatty-acid metabolism intermediates" href="http://en.wikipedia.org/wiki/Template:Fatty-acid_metabolism_intermediates">intermediates</a></li>
 +
                                        </ul>
 +
                                        </li>
 +
                                        <li><a title="Template:Glycerides" href="http://en.wikipedia.org/wiki/Template:Glycerides">Glycerides</a></li>
 +
                                        <li><a title="Template:Phospholipids" href="http://en.wikipedia.org/wiki/Template:Phospholipids">Phospholipids</a></li>
 +
                                        <li><a title="Template:Sphingolipids" href="http://en.wikipedia.org/wiki/Template:Sphingolipids">Sphingolipids</a></li>
 +
                                        <li><a title="Template:Cholesterol and steroid intermediates" href="http://en.wikipedia.org/wiki/Template:Cholesterol_and_steroid_intermediates">Steroids</a></li>
 +
                                    </ul>
 +
                                    </div>
 +
                                    </td>
 +
                                </tr>
 +
                                <tr style="height: 2px">
 +
                                    <td colspan="2">&nbsp;</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <th class="navbox-group" scope="row"><a title="Template:Nucleic acids" href="http://en.wikipedia.org/wiki/Template:Nucleic_acids">Nucleic acids</a></th>
 +
                                    <td class="navbox-list navbox-odd hlist" style="width: 100%; padding-bottom: 0px; text-align: left; padding-top: 0px; padding-left: 0px; border-left: 2px solid; padding-right: 0px">
 +
                                    <div style="padding-bottom: 0em; padding-top: 0em; padding-left: 0.25em; padding-right: 0.25em">
 +
                                    <ul>
 +
                                        <li><a title="Template:Nucleobases, nucleosides, and nucleotides" href="http://en.wikipedia.org/wiki/Template:Nucleobases,_nucleosides,_and_nucleotides">Constituents</a>
 +
                                        <ul>
 +
                                            <li><a title="Template:Nucleotide metabolism intermediates" href="http://en.wikipedia.org/wiki/Template:Nucleotide_metabolism_intermediates">intermediates</a></li>
 +
                                        </ul>
 +
                                        </li>
 +
                                    </ul>
 +
                                    </div>
 +
                                    </td>
 +
                                </tr>
 +
                                <tr style="height: 2px">
 +
                                    <td colspan="2">&nbsp;</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <th class="navbox-group" scope="row"><a title="Template:Protein topics" href="http://en.wikipedia.org/wiki/Template:Protein_topics">Proteins</a></th>
 +
                                    <td class="navbox-list navbox-even hlist" style="width: 100%; padding-bottom: 0px; text-align: left; padding-top: 0px; padding-left: 0px; border-left: 2px solid; padding-right: 0px">
 +
                                    <div style="padding-bottom: 0em; padding-top: 0em; padding-left: 0.25em; padding-right: 0.25em">
 +
                                    <ul>
 +
                                        <li><a title="Template:Amino acids" href="http://en.wikipedia.org/wiki/Template:Amino_acids">Amino acids</a>
 +
                                        <ul>
 +
                                            <li><a title="Template:Amino acid metabolism intermediates" href="http://en.wikipedia.org/wiki/Template:Amino_acid_metabolism_intermediates">intermediates</a></li>
 +
                                        </ul>
 +
                                        </li>
 +
                                    </ul>
 +
                                    </div>
 +
                                    </td>
 +
                                </tr>
 +
                                <tr style="height: 2px">
 +
                                    <td colspan="2">&nbsp;</td>
 +
                                </tr>
 +
                                <tr>
 +
                                    <th class="navbox-group" scope="row">Other</th>
 +
                                    <td class="navbox-list navbox-odd hlist" style="width: 100%; padding-bottom: 0px; text-align: left; padding-top: 0px; padding-left: 0px; border-left: 2px solid; padding-right: 0px">
 +
                                    <div style="padding-bottom: 0em; padding-top: 0em; padding-left: 0.25em; padding-right: 0.25em">
 +
                                    <ul>
 +
                                        <li><a title="Template:Tetrapyrroles" href="http://en.wikipedia.org/wiki/Template:Tetrapyrroles">Tetrapyrroles</a></li>
 +
                                        <li><a title="Template:Heme metabolism intermediates" href="http://en.wikipedia.org/wiki/Template:Heme_metabolism_intermediates">intermediates</a></li>
 +
                                    </ul>
 +
                                    </div>
 +
                                    </td>
 +
                                </tr>
 +
                            </tbody>
 +
                        </table>
 
                         </td>
 
                         </td>
 
                     </tr>
 
                     </tr>
Line 432: Line 285:
 
     </tbody>
 
     </tbody>
 
</table>
 
</table>
<!--
 
NewPP limit report
 
Parsed by mw1176
 
CPU time usage: 0.631 seconds
 
Real time usage: 0.730 seconds
 
Preprocessor visited node count: 4770/1000000
 
Preprocessor generated node count: 0/1500000
 
Post‐expand include size: 175715/2097152 bytes
 
Template argument size: 7092/2097152 bytes
 
Highest expansion depth: 11/40
 
Expensive parser function count: 9/500
 
Lua time usage: 0.242/10.000 seconds
 
Lua memory usage: 3.99 MB/50 MB
 
--><!--
 
Transclusion expansion time report (%,ms,calls,template)
 
100.00%  622.227      1 - -total
 
28.07%  174.682    48 - Template:Cite_journal
 
10.28%  63.984      6 - Template:Citation_needed
 
9.90%  61.605      8 - Template:Fix
 
8.64%  53.764    15 - Template:Category_handler
 
6.62%  41.214      3 - Template:Cite_pmid
 
6.30%  39.217      6 - Template:Cite_book
 
3.46%  21.528      1 - Template:For
 
3.10%  19.318      1 - Template:Hatnote
 
2.96%  18.427      1 - Template:Cite_pmid/12643542
 
--><!-- Saved in parser cache with key enwiki:pcache:idhash:55172-0!*!0!!en!4!* and timestamp 20150522090732 and revision id 658981730
 
--><noscript></noscript></div>
 
<div class="printfooter">Retrieved from &quot;<a dir="ltr" href="http://en.wikipedia.org/w/index.php?title=Proteomics&amp;oldid=658981730">http://en.wikipedia.org/w/index.php?title=Proteomics&amp;oldid=658981730</a>&quot;</div>
 
<div id="catlinks" class="catlinks">
 
<div id="mw-normal-catlinks" class="mw-normal-catlinks"><a title="Help:Category" href="http://en.wikipedia.org/wiki/Help:Category">Categories</a>:
 
<ul>
 
    <li><a title="Category:Proteomics" href="http://en.wikipedia.org/wiki/Category:Proteomics">Proteomics</a></li>
 
    <li><a title="Category:Genomics" href="http://en.wikipedia.org/wiki/Category:Genomics">Genomics</a></li>
 
    <li><a title="Category:Bioinformatics" href="http://en.wikipedia.org/wiki/Category:Bioinformatics">Bioinformatics</a></li>
 
    <li><a title="Category:Proteins" href="http://en.wikipedia.org/wiki/Category:Proteins">Proteins</a></li>
 
</ul>
 
</div>
 
 
</div>
 
</div>
 
</div>
 
</div>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>

Latest revision as of 21:53, 28 May 2015

Youngjun Bhak

Proteome

From Wikipedia, the free encyclopedia
 
Jump to: navigation, search

The proteome is the entire set of proteins expressed by a genome, cell, tissue or organism at a certain time. More specifically, it is the set of expressed proteins in a given type of cell or organism, at a given time, under defined conditions. The term is a blend of proteins and genome. Proteomics is the study of the proteome.

 

 

Systems

The term has been applied to several different types of biological systems. A cellular proteome is the collection of proteins found in a particular cell type under a particular set of environmental conditions such as exposure to hormone stimulation. It can also be useful to consider an organism's complete proteome, which can be conceptualized as the complete set of proteins from all of the various cellular proteomes. This is very roughly the protein equivalent of the genome. The term "proteome" has also been used to refer to the collection of proteins in certain sub-cellular biological systems. For example, all of the proteins in a virus can be called a viral proteome.

History

Marc Wilkins coined the term proteome [1] in 1994 in a symposium on "2D Electrophoresis: from protein maps to genomes" held in Siena in Italy. It appeared in print in 1995,[2] with the publication of part of Wilkins's PhD thesis. Wilkins used the term to describe the entire complement of proteins expressed by a genome, cell, tissue or organism.

Size and contents

The proteome is larger than the genome, especially in eukaryotes, in the sense that there are more proteins than genes. This is due to alternative splicing of genes and post-translational modifications like glycosylation or phosphorylation.

Moreover the proteome has at least two levels of complexity lacking in the genome. While the genome is defined by the sequence of nucleotides, the proteome cannot be limited to the sum of the sequences of the proteins present. Knowledge of the proteome requires knowledge of (1) the structure of the proteins in the proteome and (2) the functional interaction between the proteins.

Studying the proteome

Proteomics, the study of the proteome, has largely been practiced through the separation of proteins by two dimensional gel electrophoresis. In the first dimension, the proteins are separated by isoelectric focusing, which resolves proteins on the basis of charge. In the second dimension, proteins are separated by molecular weight using SDS-PAGE. The gel is dyed with Coomassie Brilliant Blue or silver to visualize the proteins. Spots on the gel are proteins that have migrated to specific locations.

The mass spectrometer has augmented proteomics.[3] Peptide mass fingerprinting identifies a protein by cleaving it into short peptides and then deduces the protein's identity by matching the observed peptide masses against a sequence database. Tandem mass spectrometry, on the other hand, can get sequence information from individual peptides by isolating them, colliding them with a non-reactive gas, and then cataloguing the fragment ions produced.

In May 2014, a draft map of the human proteome was published in Nature.[4] This map was generated using high-resolution Fourier-transform mass spectrometry. This study profiled 30 histologically normal human samples resulting in the identification of proteins coded by 17,294 genes. This accounts for around 84% of the total annotated protein-coding genes.

See also

References

  1. Jump up ^ Wilkins, Marc (Dec 2009). "Proteomics data mining". Expert review of proteomics (England) 6 (6): 599–603. doi:10.1586/epr.09.81. PMID 19929606. 
  2. Jump up ^ Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I. (1995). "Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium". Electrophoresis 7 (7): 1090–94. doi:10.1002/elps.11501601185. PMID 7498152. 
  3. Jump up ^ Altelaar, AF; Munoz, J; Heck, AJ (January 2013). "Next-generation proteomics: towards an integrative view of proteome dynamics.". Nature reviews. Genetics 14 (1): 35–48. doi:10.1038/nrg3356. PMID 23207911. 
  4. Jump up ^ Kim, Min-Sik et al. (May 2014). "A draft map of the human proteome". Nature 509 (7502): 575–81. doi:10.1038/nature13302. PMID 24870542. 

External links