Difference between pages "Genome" and "Scientific Experiment"

From Biolecture.org
(Difference between pages)
imported>J
 
imported>조우빈
 
Line 1: Line 1:
<p><font color="#000000"><font size="3">The&nbsp;<strong>genome</strong> is the entirety of a set of sequences in an organism that&nbsp;encodes information for survival and the&nbsp;continuation of the species it belongs to. </font></font></p>
 
<p><font color="#000000"><font size="3">The main function of genome is information storage and processing to form an entity that utilizes envergy to keep processing signals to interact with other genomes in the whole eco-system.</font><br />
 
<br />
 
<font size="3">The genome is universal in the universe and aliens living other planets also have genomes. </font></font></p>
 
<p><font color="#000000"><font size="3">The information is usually stored&nbsp;in DNA or RNA in the organisms found on Earth.<br />
 
<br />
 
The genome is often classified&nbsp;into the protein coding genes and the non-coding sequences of the DNA historically.<sup id="cite_ref-0" class="reference"><font size="2"><font size="3"><span>[</span>1</font><span><font size="3">]</font><br />
 
</span></font></sup></font></font></p>
 
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<p><span style="FONT-SIZE: large"><font color="#000000">The essence of genome</font></span></p>
+
 
 +
<p><strong>Obese in Genomics</strong></p>
 +
 
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<p><font color="#000000"><font size="3">The essence of genomes is that it is the foundation of spontaneous information processing network that can utilizes energy in time axis. The genome is a kind of linearly expressed language system.</font></font><font color="#000000"><font size="3"><br />
+
 
<br />
+
<p><strong>What is Obese?</strong></p>
</font></font></p>
+
 
 +
<div>-Obesity is a <a href="https://en.wikipedia.org/wiki/Medical_condition">medical condition</a> in which excess <a href="https://en.wikipedia.org/wiki/Body_fat">body fat</a> has accumulated to the extent that it may have a negative effect on health.</div>
 +
 
 +
<div>&nbsp;</div>
 +
 
 +
<div>-People are generally considered obese when their <a href="https://en.wikipedia.org/wiki/Body_mass_index">body mass index</a> (BMI), a measurement obtained by dividing a person&#39;s weight by the square of the person&#39;s height, is over 30&nbsp;<a href="https://en.wikipedia.org/wiki/Kilogram">kg</a>/<a href="https://en.wikipedia.org/wiki/Square_metre">m</a><a href="https://en.wikipedia.org/wiki/Square_metre">2</a> , with the range 25&ndash;30&nbsp;<a href="https://en.wikipedia.org/wiki/Kilogram">kg</a>/<a href="https://en.wikipedia.org/wiki/Square_metre">m</a><a href="https://en.wikipedia.org/wiki/Square_metre">2</a> defined as <a href="https://en.wikipedia.org/wiki/Overweight">overweight</a></div>
 +
 
 +
<div>&nbsp;</div>
 +
 
 +
<div>-Obesity increases the likelihood of <a href="https://en.wikipedia.org/wiki/Obesity-associated_morbidity">various diseases</a>, particularly <a href="https://en.wikipedia.org/wiki/Cardiovascular_diseases">heart disease</a>, <a href="https://en.wikipedia.org/wiki/Diabetes_mellitus_type_2">type 2 diabetes</a>, <a href="https://en.wikipedia.org/wiki/Obstructive_sleep_apnea">obstructive sleep apnea</a>, certain types of <a href="https://en.wikipedia.org/wiki/Cancer">cancer</a>, and <a href="https://en.wikipedia.org/wiki/Osteoarthritis">osteoarthritis</a>.</div>
 +
 
 +
<div>&nbsp;</div>
 +
 
 +
<div>-Obesity is most commonly caused by a combination of excessive <a href="https://en.wikipedia.org/wiki/Food_energy">food</a> intake, lack of physical activity, and <a href="https://en.wikipedia.org/wiki/Polygenic_inheritance">genetic susceptibility</a>.</div>
 +
 
 +
<div>&nbsp;</div>
 +
 
 +
<div>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<p><span style="FONT-SIZE: large"><span id="Origin_of_Term" class="mw-headline"><font color="#000000">Origin of Term</font></span></span></p>
+
 
<p><span style="FONT-SIZE: small"><font color="#000000">The term was adapted in 1920 by [[Hans Winkler]], Professor of Botany at the University of Hamburg, Germany. In Greek, the word <em>genome</em> (&gamma;ί&nu;&omicron;&mu;&alpha;&iota;) means I become, I am born, to come into being. </font></span></p>
+
<p><strong>Arrangement of basic terms&nbsp;in Genomics</strong></p>
<p><span style="FONT-SIZE: small"><font color="#000000">The Oxford English Dictionary suggests the name to be a blend of the words <em><strong>gen</strong>e</em> and <em>chromos<strong>ome</strong></em>. A few related <em>-ome</em> words already existed, such as <em>biome</em> and <em>rhizome</em>, forming a vocabulary into which <em>genome</em> fits systematically.<sup id="cite_ref-1" class="reference">[2]</sup></font></span></p>
+
 
<p><span style="FONT-SIZE: large"><span id="Overview" class="mw-headline"><font color="#000000">Overview</font></span></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">Some organisms have multiple copies of chromosomes, diploid, triploid, tetraploid and so on. In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half of the number of chromosome of the somatic cell and the genome is a full set of chromosomes in a gamete. In haploid organisms, including cells of bacteria, archaea, and in organelles including mitochondria and chloroplasts, or viruses, that similarly contain genes, the single or set of circular and/or linear chains of DNA (or RNA for some viruses), likewise constitute the <em>genome</em>. The term genome can be applied specifically to mean that stored on a complete set of <em>nuclear DNA</em> (i.e., the &quot;nuclear genome&quot;) but can also be applied to that stored within organelles that contain their own DNA, as with the &quot;mitochondrial genome&quot; or the &quot;chloroplast genome&quot;. Additionally, the genome can comprise nonchromosomal genetic elements such as viruses, plasmids, and transposable elements<sup id="cite_ref-Brock_2-0" class="reference">[3]</sup>. When people say that the genome of a sexually reproducing species has been &quot;sequenced&quot;, typically they are referring to a determination of the sequences of one set of autosomes and one of each type of sex chromosome, which together represent both of the possible sexes. Even in species that exist in only one sex, what is described as &quot;a genome sequence&quot; may be a composite read from the chromosomes of various individuals. In general use, the phrase &quot;genetic makeup&quot; is sometimes used conversationally to mean the genome of a particular individual or organism. The study of the global properties of genomes of related organisms is usually referred to as genomics, which distinguishes it from genetics which generally studies the properties of single genes or groups of genes.</font></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">Both the number of base pairs and the number of genes vary widely from one species to another, and there is only a rough correlation between the two (an observation known as the C-value paradox). At present, the highest known number of genes is around 60,000, for the protozoan causing trichomoniasis (see List of sequenced eukaryotic genomes), almost three times as many as in the human genome.</font></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">An analogy to the human genome stored on DNA is that of instructions stored in a library:</font></span></p>
 
<ul>
 
    <li><span style="FONT-SIZE: small"><font color="#000000">The library would contain 46 books (chromosomes)</font> </span></li>
 
    <li><span style="FONT-SIZE: small"><font color="#000000">The books range in size from 400 to 3340 pages (genes)</font> </span></li>
 
    <li><span style="FONT-SIZE: small"><font color="#000000">which is 48 to 250 million letters (A,C,G,T) per book.</font> </span></li>
 
    <li><span style="FONT-SIZE: small"><font color="#000000">Hence the library contains over six billion letters total;</font> </span></li>
 
    <li><span style="FONT-SIZE: small"><font color="#000000">The library fits into a cell nucleus the size of a pinpoint;</font> </span></li>
 
    <li><span style="FONT-SIZE: small"><font color="#000000">A copy of the library (all 46 books) is contained in almost every cell of our body.</font> </span></li>
 
</ul>
 
<p><span style="FONT-SIZE: large"><span id="Types" class="mw-headline"><font color="#000000">Types</font></span></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">Most biological entities that are more complex than a virus sometimes or always carry additional genetic material besides that which resides in their chromosomes. In some contexts, such as sequencing the genome of a pathogenic microbe, &quot;genome&quot; is meant to include information stored on this auxiliary material, which is carried in plasmids. In such circumstances then, &quot;genome&quot; describes all of the genes and information on non-coding DNA that have the potential to be present.</font></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">In eukaryotes such as plants, protozoa and animals, however, &quot;genome&quot; carries the typical connotation of only information on chromosomal DNA. So although these organisms contain chloroplasts and/or mitochondria that have their own DNA, the genetic information contained by DNA within these organelles is not considered part of the genome. In fact, mitochondria are sometimes said to have their own genome often referred to as the &quot;mitochondrial genome&quot;. The DNA found within the chloroplast may be referred to as the &quot;plastome&quot;.</font></span></p>
 
<p><span style="FONT-SIZE: large"><span id="Genomes_and_genetic_variation" class="mw-headline"><font color="#000000">Genomes and genetic variation</font></span></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">Note that a genome does not capture the genetic diversity or the genetic polymorphism of a species. For example, the human genome sequence in principle could be determined from just half the information on the DNA of one cell from one individual. To learn what variations in genetic information underlie particular traits or diseases requires comparisons across individuals. This point explains the common usage of &quot;genome&quot; (which parallels a common usage of &quot;gene&quot;) to refer not to the information in any particular DNA sequence, but to a whole family of sequences that share a biological context.</font></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">Although this concept may seem counter intuitive, it is the same concept that says there is no particular shape that is the shape of a cheetah. Cheetahs vary, and so do the sequences of their genomes. Yet both the individual animals and their sequences share commonalities, so one can learn something about cheetahs and &quot;cheetah-ness&quot; from a single example of either.</font></span></p>
 
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<p><span style="FONT-SIZE: large"><span id="Sequencing_and_mapping" class="mw-headline"><font color="#000000">Sequencing and mapping</font></span></span></p>
+
 
<div class="rellink boilerplate seealso"><span style="FONT-SIZE: small"><font color="#000000">For more details on this topic, see Genome project.</font></span></div>
+
<p><strong>What is Genomics?</strong></p>
<p><span style="FONT-SIZE: small"><font color="#000000">The Human Genome Project was organized to map and to sequence the human genome. Other genome projects include mouse, rice, the plant <em>Arabidopsis thaliana</em>, the puffer fish, bacteria like E. coli, etc. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (bacteriophage MS2). The first DNA-genome project to be completed was the Phage &Phi;-X174, with only 5386 base pairs, which was sequenced by Fred Sanger in 1977 . The first bacterial genome to be completed was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995.</font></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">The development of new technologies has dramatically decreased the difficulty and cost of sequencing, and the number of complete genome sequences is rising rapidly. Among many genome database sites, the one maintained by the US National Institutes of Health is inclusive.<sup id="cite_ref-3" class="reference">[4]</sup></font></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">These new technologies open up the prospect of personal genome sequencing as an important diagnostic tool. A major step toward that goal was the May 2007 <em>New York Times</em> announcement that the full genome of DNA pioneer James D. Watson was deciphered.<sup id="cite_ref-4" class="reference">[5]</sup></font></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome.<sup id="cite_ref-5" class="reference">[6]</sup><sup id="cite_ref-6" class="reference">[7]</sup></font></span></p>
 
<h2><span id="Comparison_of_different_genome_sizes" class="mw-headline"><font color="#000000">Comparison of different genome sizes</font></span></h2>
 
<div class="rellink relarticle mainarticle"><span style="FONT-SIZE: small"><font color="#000000">Main article: Genome size</font></span></div>
 
<p>
 
<table id="sortable_table_id_0" class="wikitable sortable">
 
    <tbody>
 
        <tr>
 
            <th><font color="#000000">Organism type<span class="sortarrow"><img alt="↓" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
 
            <th><font color="#000000">Organism<span class="sortarrow"><img alt="↓" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
 
            <th><font color="#000000">Genome size (base pairs)<span class="sortarrow"><img alt="↓" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
 
            <th><font color="#000000">mass - in pg<span class="sortarrow"><img alt="↓" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
 
            <th><font color="#000000">Note<span class="sortarrow"><img alt="↓" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Virus</font></td>
 
            <td><font color="#000000">Bacteriophage MS2</font></td>
 
            <td align="right"><font color="#000000">3,569</font></td>
 
            <td align="right"><font color="#000000">0.000002</font></td>
 
            <td><font color="#000000">First sequenced RNA-genome<sup id="cite_ref-Fiers1976_7-0" class="reference"><font size="2"><span>[</span>8<span>]</span></font></sup></font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Virus</font></td>
 
            <td><font color="#000000">SV40</font></td>
 
            <td align="right"><font color="#000000">5,224</font></td>
 
            <td>&nbsp;</td>
 
            <td><sup id="cite_ref-Fiers1978_8-0" class="reference"><font size="2"><font color="#000000"><span>[</span>9<span>]</span></font></font></sup></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Virus</font></td>
 
            <td><font color="#000000">Phage &Phi;-X174</font></td>
 
            <td align="right"><font color="#000000">5,386</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">First sequenced DNA-genome<sup id="cite_ref-Sanger1977_9-0" class="reference"><font size="2"><span>[</span>10<span>]</span></font></sup></font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Virus</font></td>
 
            <td><font color="#000000">HIV</font></td>
 
            <td align="right"><font color="#000000">9749<sup id="cite_ref-10" class="reference"><font size="2"><span>[</span>11<span>]</span></font></sup></font></td>
 
            <td>&nbsp;</td>
 
            <td>&nbsp;</td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Virus</font></td>
 
            <td><font color="#000000">Phage &lambda;</font></td>
 
            <td align="right"><font color="#000000">48,502</font></td>
 
            <td>&nbsp;</td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Virus</font></td>
 
            <td><font color="#000000">Mimivirus</font></td>
 
            <td align="right"><font color="#000000">1,181,404</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">Largest known viral genome</font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Bacterium</font></td>
 
            <td><em><font color="#000000">Haemophilus influenzae</font></em></td>
 
            <td align="right"><font color="#000000">1,830,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">First genome of living organism, July 1995<sup id="cite_ref-Fleichmann_1995_11-0" class="reference"><font size="2"><span>[</span>12<span>]</span></font></sup></font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Bacterium</font></td>
 
            <td><em><font color="#000000">Carsonella ruddii</font></em></td>
 
            <td align="right"><font color="#000000">159,662</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">Smallest non-viral genome.<sup id="cite_ref-12" class="reference"><font size="2"><span>[</span>13<span>]</span></font></sup></font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Bacterium</font></td>
 
            <td><em><font color="#000000">Buchnera aphidicola</font></em></td>
 
            <td align="right"><font color="#000000">600,000</font></td>
 
            <td>&nbsp;</td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Bacterium</font></td>
 
            <td><em><font color="#000000">Wigglesworthia glossinidia</font></em></td>
 
            <td align="right"><font color="#000000">700,000</font></td>
 
            <td>&nbsp;</td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Bacterium</font></td>
 
            <td><em><font color="#000000">Escherichia coli</font></em></td>
 
            <td align="right"><font color="#000000">4,600,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><sup id="cite_ref-13" class="reference"><font size="2"><font color="#000000"><span>[</span>14<span>]</span></font></font></sup></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Bacterium</font></td>
 
            <td><font color="#000000"><em>Solibacter usitatus</em> (strain Ellin 6076)</font></td>
 
            <td align="right"><font color="#000000">9,970,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">Largest known Bacterial genome</font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Amoeboid</font></td>
 
            <td><font color="#000000"><em>Polychaos dubium</em> (<em>&quot;Amoeba&quot; dubia</em>)</font></td>
 
            <td align="right"><font color="#000000">670,000,000,000</font></td>
 
            <td align="right"><font color="#000000">737</font></td>
 
            <td><font color="#000000">Largest known genome.<sup id="cite_ref-Parfrey2008_14-0" class="reference"><font size="2"><span>[</span>15<span>]</span></font></sup></font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Plant</font></td>
 
            <td><em><font color="#000000">Arabidopsis thaliana</font></em></td>
 
            <td align="right"><font color="#000000">157,000,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">First plant genome sequenced, December 2000.<sup id="cite_ref-Greilhuber_15-0" class="reference"><font size="2"><span>[</span>16<span>]</span></font></sup></font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Plant</font></td>
 
            <td><em><font color="#000000">Genlisea margaretae</font></em></td>
 
            <td align="right"><font color="#000000">63,400,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">Smallest recorded flowering plant genome, 2006.<sup id="cite_ref-Greilhuber_15-1" class="reference"><font size="2"><span>[</span>16<span>]</span></font></sup></font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Plant</font></td>
 
            <td><em><font color="#000000">Fritillaria assyrica</font></em></td>
 
            <td align="right"><font color="#000000">130,000,000,000</font></td>
 
            <td>&nbsp;</td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Plant</font></td>
 
            <td><em><font color="#000000">Populus trichocarpa</font></em></td>
 
            <td align="right"><font color="#000000">480,000,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">First tree genome, September 2006</font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Moss</font></td>
 
            <td><em><font color="#000000">Physcomitrella patens</font></em></td>
 
            <td align="right"><font color="#000000">480,000,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">First genome of a bryophyte, January 2008 <sup id="cite_ref-16" class="reference"><font size="2"><span>[</span>17<span>]</span></font></sup></font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Yeast</font></td>
 
            <td><em><font color="#000000">Saccharomyces cerevisiae</font></em></td>
 
            <td align="right"><font color="#000000">12,100,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><sup id="cite_ref-17" class="reference"><font size="2"><font color="#000000"><span>[</span>18<span>]</span></font></font></sup></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Fungus</font></td>
 
            <td><em><font color="#000000">Aspergillus nidulans</font></em></td>
 
            <td align="right"><font color="#000000">30,000,000</font></td>
 
            <td>&nbsp;</td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Nematode</font></td>
 
            <td><em><font color="#000000">Caenorhabditis elegans</font></em></td>
 
            <td align="right"><font color="#000000">100,300,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">First multicellular animal genome, December 1998<sup id="cite_ref-18" class="reference"><font size="2"><span>[</span>19<span>]</span></font></sup></font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Nematode</font></td>
 
            <td><em><font color="#000000">Pratylenchus coffeae</font></em></td>
 
            <td align="right"><font color="#000000">20,000,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">Smallest animal genome known<sup id="cite_ref-19" class="reference"><font size="2"><span>[</span>20<span>]</span></font></sup></font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Insect</font></td>
 
            <td><font color="#000000"><em>Drosophila melanogaster</em> (fruit fly)</font></td>
 
            <td align="right"><font color="#000000">130,000,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><sup id="cite_ref-Adams_2000_20-0" class="reference"><font size="2"><font color="#000000"><span>[</span>21<span>]</span></font></font></sup></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Insect</font></td>
 
            <td><font color="#000000"><em>Bombyx mori</em> (silk moth)</font></td>
 
            <td align="right"><font color="#000000">530,000,000</font></td>
 
            <td>&nbsp;</td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Insect</font></td>
 
            <td><font color="#000000"><em>Apis mellifera</em> (honey bee)</font></td>
 
            <td align="right"><font color="#000000">236,000,000</font></td>
 
            <td>&nbsp;</td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Fish</font></td>
 
            <td><font color="#000000"><em>Tetraodon nigroviridis</em> (type of puffer fish)</font></td>
 
            <td align="right"><font color="#000000">385,000,000</font></td>
 
            <td>&nbsp;</td>
 
            <td><font color="#000000">Smallest vertebrate genome known</font></td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Mammal</font></td>
 
            <td><em><font color="#000000">Homo sapiens</font></em></td>
 
            <td align="right"><font color="#000000">3,200,000,000</font></td>
 
            <td align="right"><font color="#000000">3</font></td>
 
            <td>&nbsp;</td>
 
        </tr>
 
        <tr>
 
            <td><font color="#000000">Fish</font></td>
 
            <td><font color="#000000"><em>Protopterus aethiopicus</em> (marbled lungfish)</font></td>
 
            <td align="right"><font color="#000000">130,000,000,000</font></td>
 
            <td align="right"><font color="#000000">143</font></td>
 
            <td><font color="#000000">Largest vertebrate genome known</font></td>
 
        </tr>
 
    </tbody>
 
</table>
 
</p>
 
<p><span style="FONT-SIZE: small"><font color="#000000"><em>Note:</em> The DNA from a single (diploid) human cell if the 46 chromosomes were connected end-to-end and straightened, would have a length of ~2 m and a width of ~2.4 nanometers.</font></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">Since genomes and their organisms are very complex, one research strategy is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multicellular organisms (see Developmental biology). The work is both <em>in vivo</em> and <em>in silico</em>.<sup id="cite_ref-21" class="reference">[22]</sup><sup id="cite_ref-22" class="reference">[23]</sup></font></span></p>
 
<h2><span id="Genome_evolution" class="mw-headline"><font color="#000000">Genome evolution</font></span></h2>
 
<p><span style="FONT-SIZE: small"><font color="#000000">Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to the details of any particular genes and their products. Researchers compare traits such as <em>chromosome number</em> (karyotype), genome size, gene order, codon usage bias, and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005).</font></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">Duplications play a major role in shaping the genome. Duplications may range from extension of short tandem repeats, to duplication of a cluster of genes, and all the way to duplications of entire chromosomes or even entire genomes. Such duplications are probably fundamental to the creation of genetic novelty.</font></span></p>
 
<p><span style="FONT-SIZE: small"><font color="#000000">Horizontal gene transfer is invoked to explain how there is often extreme similarity between small portions of the genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes. Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes.</font></span></p>
 
<h2><span id="References" class="mw-headline"><font color="#000000">References</font></span></h2>
 
<div style="column-count: 2; -moz-column-count: 2; -webkit-column-count: 2" class="references-small references-column-count references-column-count-2">
 
<ol class="references">
 
    <li id="cite_note-0"><strong><a href="#cite_ref-0"><font color="#0645ad">^</font></a></strong> Ridley, M. (2006). <em>Genome</em>. New York, NY: Harper Perennial. <a class="internal mw-magiclink-isbn" href="/wiki/Special:BookSources/0060194979"><font color="#0645ad">ISBN 0-06-019497-9</font></a> </li>
 
    <li id="cite_note-1"><strong><a href="#cite_ref-1"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Joshua Lederberg and Alexa T. McCray (2001). <a class="external text" rel="nofollow" href="http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf"><font color="#3366bb">&quot;'Ome Sweet 'Omics -- A Genealogical Treasury of Words&quot;</font></a>. <em>The Scientist</em> <strong>15</strong> (7)<span class="printonly">. <a class="external free" rel="nofollow" href="http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf"><font color="#3366bb">http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=%27Ome+Sweet+%27Omics+--+A+Genealogical+Treasury+of+Words&amp;rft.jtitle=The+Scientist&amp;rft.aulast=Joshua+Lederberg+and+Alexa+T.+McCray&amp;rft.au=Joshua+Lederberg+and+Alexa+T.+McCray&amp;rft.date=2001&amp;rft.volume=15&amp;rft.issue=7&amp;rft_id=http%3A%2F%2Flhncbc.nlm.nih.gov%2Flhc%2Fdocs%2Fpublished%2F2001%2Fpub2001047.pdf&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-Brock-2"><strong><a href="#cite_ref-Brock_2-0"><font color="#0645ad">^</font></a></strong> <span class="citation book">Madigan M, Martinko J (editors) (2006). <em>Brock Biology of Microorganisms</em> (11th ed.). Prentice Hall. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-13-144329-1" href="/wiki/Special:BookSources/0-13-144329-1"><font color="#0645ad">0-13-144329-1</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brock+Biology+of+Microorganisms&amp;rft.aulast=Madigan+M%2C+Martinko+J+%28editors%29&amp;rft.au=Madigan+M%2C+Martinko+J+%28editors%29&amp;rft.date=2006&amp;rft.edition=11th&amp;rft.pub=Prentice+Hall&amp;rft.isbn=0-13-144329-1&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-3"><strong><a href="#cite_ref-3"><font color="#0645ad">^</font></a></strong> <a class="external free" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome&amp;itool=toolbar"><font color="#3366bb">http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome&amp;itool=toolbar</font></a> </li>
 
    <li id="cite_note-4"><strong><a href="#cite_ref-4"><font color="#0645ad">^</font></a></strong> <span class="citation news">Wade, Nicholas (2007-05-31). <a class="external text" rel="nofollow" href="http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;ex=1180843200&amp;en=19e1d55639350b73&amp;ei=5087%0A"><font color="#3366bb">&quot;Genome of DNA Pioneer Is Deciphered&quot;</font></a>. <em>The New York Times</em><span class="printonly">. <a class="external free" rel="nofollow" href="http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;ex=1180843200&amp;en=19e1d55639350b73&amp;ei=5087%0A"><font color="#3366bb">http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;ex=1180843200&amp;en=19e1d55639350b73&amp;ei=5087%0A</font></a></span><span class="reference-accessdate">. Retrieved 2010-04-02</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Genome+of+DNA+Pioneer+Is+Deciphered&amp;rft.jtitle=The+New+York+Times&amp;rft.aulast=Wade&amp;rft.aufirst=Nicholas&amp;rft.au=Wade%2C%26%2332%3BNicholas&amp;rft.date=2007-05-31&amp;rft_id=http%3A%2F%2Fwww.nytimes.com%2F2007%2F05%2F31%2Fscience%2F31cnd-gene.html%3Fem%26ex%3D1180843200%26en%3D19e1d55639350b73%26ei%3D5087%250A&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-5"><strong><a href="#cite_ref-5"><font color="#0645ad">^</font></a></strong> <a class="external free" rel="nofollow" href="http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp3_1.shtml"><font color="#3366bb">http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp3_1.shtml</font></a> </li>
 
    <li id="cite_note-6"><strong><a href="#cite_ref-6"><font color="#0645ad">^</font></a></strong> <a class="external free" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/About/primer/mapping.html"><font color="#3366bb">http://www.ncbi.nlm.nih.gov/About/primer/mapping.html</font></a> </li>
 
    <li id="cite_note-Fiers1976-7"><strong><a href="#cite_ref-Fiers1976_7-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Fiers W, <em>et al.</em> (1976). <a class="external text" rel="nofollow" href="http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html"><font color="#3366bb">&quot;Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene&quot;</font></a>. <em>Nature</em> <strong>260</strong> (5551): 500&ndash;507. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1038%2F260500a0"><font color="#3366bb">10.1038/260500a0</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/1264203"><font color="#3366bb">1264203</font></a><span class="printonly">. <a class="external free" rel="nofollow" href="http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html"><font color="#3366bb">http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Complete+nucleotide-sequence+of+bacteriophage+MS2-RNA+-+primary+and+secondary+structure+of+replicase+gene&amp;rft.jtitle=Nature&amp;rft.aulast=Fiers+W%2C+%27%27et+al.%27%27&amp;rft.au=Fiers+W%2C+%27%27et+al.%27%27&amp;rft.date=1976&amp;rft.volume=260&amp;rft.issue=5551&amp;rft.pages=500%E2%80%93507&amp;rft_id=info:doi/10.1038%2F260500a0&amp;rft_id=info:pmid/1264203&amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv260%2Fn5551%2Fabs%2F260500a0.html&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-Fiers1978-8"><strong><a href="#cite_ref-Fiers1978_8-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Fiers W, Contreras R, Haegemann G, Rogiers R, Van de Voorde A, Van Heuverswyn H, Van Herreweghe J, Volckaert G, Ysebaert M (1978). <a class="external text" rel="nofollow" href="http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html"><font color="#3366bb">&quot;Complete nucleotide sequence of SV40 DNA&quot;</font></a>. <em>Nature</em> <strong>273</strong> (5658): 113&ndash;120. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1038%2F273113a0"><font color="#3366bb">10.1038/273113a0</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/205802"><font color="#3366bb">205802</font></a><span class="printonly">. <a class="external free" rel="nofollow" href="http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html"><font color="#3366bb">http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Complete+nucleotide+sequence+of+SV40+DNA&amp;rft.jtitle=Nature&amp;rft.aulast=Fiers+W%2C+Contreras+R%2C+Haegemann+G%2C+Rogiers+R%2C+Van+de+Voorde+A%2C+Van+Heuverswyn+H%2C+Van+Herreweghe+J%2C+Volckaert+G%2C+Ysebaert+M&amp;rft.au=Fiers+W%2C+Contreras+R%2C+Haegemann+G%2C+Rogiers+R%2C+Van+de+Voorde+A%2C+Van+Heuverswyn+H%2C+Van+Herreweghe+J%2C+Volckaert+G%2C+Ysebaert+M&amp;rft.date=1978&amp;rft.volume=273&amp;rft.issue=5658&amp;rft.pages=113%E2%80%93120&amp;rft_id=info:doi/10.1038%2F273113a0&amp;rft_id=info:pmid/205802&amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv273%2Fn5658%2Fabs%2F273113a0.html&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-Sanger1977-9"><strong><a href="#cite_ref-Sanger1977_9-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977). <a class="external text" rel="nofollow" href="http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html"><font color="#3366bb">&quot;Nucleotide sequence of bacteriophage phi X174 DNA&quot;</font></a>. <em>Nature</em> <strong>265</strong> (5596): 687&ndash;695. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1038%2F265687a0"><font color="#3366bb">10.1038/265687a0</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/870828"><font color="#3366bb">870828</font></a><span class="printonly">. <a class="external free" rel="nofollow" href="http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html"><font color="#3366bb">http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Nucleotide+sequence+of+bacteriophage+phi+X174+DNA&amp;rft.jtitle=Nature&amp;rft.aulast=Sanger+F%2C+Air+GM%2C+Barrell+BG%2C+Brown+NL%2C+Coulson+AR%2C+Fiddes+CA%2C+Hutchison+CA%2C+Slocombe+PM%2C+Smith+M&amp;rft.au=Sanger+F%2C+Air+GM%2C+Barrell+BG%2C+Brown+NL%2C+Coulson+AR%2C+Fiddes+CA%2C+Hutchison+CA%2C+Slocombe+PM%2C+Smith+M&amp;rft.date=1977&amp;rft.volume=265&amp;rft.issue=5596&amp;rft.pages=687%E2%80%93695&amp;rft_id=info:doi/10.1038%2F265687a0&amp;rft_id=info:pmid/870828&amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv265%2Fn5596%2Fabs%2F265687a0.html&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-10"><strong><a href="#cite_ref-10"><font color="#0645ad">^</font></a></strong> <a class="external text" rel="nofollow" href="http://pathmicro.med.sc.edu/lecture/hiv9.htm"><font color="#3366bb">VIROLOGY - HUMAN IMMUNODEFICIENCY VIRUS AND AIDS, STRUCTURE: The Genome AND PROTEINS of HIV</font></a> </li>
 
    <li id="cite_note-Fleichmann_1995-11"><strong><a href="#cite_ref-Fleichmann_1995_11-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Fleischmann R, Adams M, White O, Clayton R, Kirkness E, Kerlavage A, Bult C, Tomb J, Dougherty B, Merrick J (1995). <a class="external text" rel="nofollow" href="http://www.sciencemag.org/cgi/content/abstract/269/5223/496"><font color="#3366bb">&quot;Whole-genome random sequencing and assembly of Haemophilus influenzae Rd&quot;</font></a>. <em>Science</em> <strong>269</strong> (5223): 496&ndash;512. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1126%2Fscience.7542800"><font color="#3366bb">10.1126/science.7542800</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/7542800"><font color="#3366bb">7542800</font></a><span class="printonly">. <a class="external free" rel="nofollow" href="http://www.sciencemag.org/cgi/content/abstract/269/5223/496"><font color="#3366bb">http://www.sciencemag.org/cgi/content/abstract/269/5223/496</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Whole-genome+random+sequencing+and+assembly+of+Haemophilus+influenzae+Rd&amp;rft.jtitle=Science&amp;rft.aulast=Fleischmann+R%2C+Adams+M%2C+White+O%2C+Clayton+R%2C+Kirkness+E%2C+Kerlavage+A%2C+Bult+C%2C+Tomb+J%2C+Dougherty+B%2C+Merrick+J&amp;rft.au=Fleischmann+R%2C+Adams+M%2C+White+O%2C+Clayton+R%2C+Kirkness+E%2C+Kerlavage+A%2C+Bult+C%2C+Tomb+J%2C+Dougherty+B%2C+Merrick+J&amp;rft.date=1995&amp;rft.volume=269&amp;rft.issue=5223&amp;rft.pages=496%E2%80%93512&amp;rft_id=info:doi/10.1126%2Fscience.7542800&amp;rft_id=info:pmid/7542800&amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F269%2F5223%2F496&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-12"><strong><a href="#cite_ref-12"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Nakabachi A, Yamashita A, Toh H, <em>et al.</em> (October 2006). &quot;The 160-kilobase genome of the bacterial endosymbiont Carsonella&quot;. <em>Science (journal)</em> <strong>314</strong> (5797): 267. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1126%2Fscience.1134196"><font color="#3366bb">10.1126/science.1134196</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/17038615"><font color="#3366bb">17038615</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+160-kilobase+genome+of+the+bacterial+endosymbiont+Carsonella&amp;rft.jtitle=Science+%28journal%29&amp;rft.aulast=Nakabachi+A%2C+Yamashita+A%2C+Toh+H%2C+%27%27et+al.%27%27&amp;rft.au=Nakabachi+A%2C+Yamashita+A%2C+Toh+H%2C+%27%27et+al.%27%27&amp;rft.date=October+2006&amp;rft.volume=314&amp;rft.issue=5797&amp;rft.pages=267&amp;rft_id=info:doi/10.1126%2Fscience.1134196&amp;rft_id=info:pmid/17038615&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-13"><strong><a href="#cite_ref-13"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Frederick R. Blattner, Guy Plunkett III, et al. (1997). <a class="external text" rel="nofollow" href="http://www.sciencemag.org/cgi/content/abstract/277/5331/1453"><font color="#3366bb">&quot;The Complete Genome Sequence of Escherichia coli K-12&quot;</font></a>. <em>Science</em> <strong>277</strong> (5331): 1453&ndash;1462. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1126%2Fscience.277.5331.1453"><font color="#3366bb">10.1126/science.277.5331.1453</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/9278503"><font color="#3366bb">9278503</font></a><span class="printonly">. <a class="external free" rel="nofollow" href="http://www.sciencemag.org/cgi/content/abstract/277/5331/1453"><font color="#3366bb">http://www.sciencemag.org/cgi/content/abstract/277/5331/1453</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+Complete+Genome+Sequence+of+Escherichia+coli+K-12&amp;rft.jtitle=Science&amp;rft.aulast=Frederick+R.+Blattner%2C+Guy+Plunkett+III%2C+et+al.&amp;rft.au=Frederick+R.+Blattner%2C+Guy+Plunkett+III%2C+et+al.&amp;rft.date=1997&amp;rft.volume=277&amp;rft.issue=5331&amp;rft.pages=1453%E2%80%931462&amp;rft_id=info:doi/10.1126%2Fscience.277.5331.1453&amp;rft_id=info:pmid/9278503&amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F277%2F5331%2F1453&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-Parfrey2008-14"><strong><a href="#cite_ref-Parfrey2008_14-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Parfrey, L.W.; Lahr, D.J.G.; Katz, L.A. (2008). &quot;The Dynamic Nature of Eukaryotic Genomes&quot;. <em>Molecular Biology and Evolution</em> <strong>25</strong> (4): 787. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1093%2Fmolbev%2Fmsn032"><font color="#3366bb">10.1093/molbev/msn032</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/18258610"><font color="#3366bb">18258610</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+Dynamic+Nature+of+Eukaryotic+Genomes&amp;rft.jtitle=Molecular+Biology+and+Evolution&amp;rft.aulast=Parfrey%2C+L.W.&amp;rft.au=Parfrey%2C+L.W.&amp;rft.date=2008&amp;rft.volume=25&amp;rft.issue=4&amp;rft.pages=787&amp;rft_id=info:doi/10.1093%2Fmolbev%2Fmsn032&amp;rft_id=info:pmid/18258610&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-Greilhuber-15">^ <a href="#cite_ref-Greilhuber_15-0"><sup><em><strong><font color="#0645ad" size="2">a</font></strong></em></sup></a> <a href="#cite_ref-Greilhuber_15-1"><sup><em><strong><font color="#0645ad" size="2">b</font></strong></em></sup></a> <span class="citation Journal">Greilhuber, J., Borsch, T., M&uuml;ller, K., Worberg, A., Porembski, S., and Barthlott, W. (2006). &quot;Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size&quot;. <em>Plant Biology</em> <strong>8</strong> (6): 770&ndash;777. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1055%2Fs-2006-924101"><font color="#3366bb">10.1055/s-2006-924101</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/17203433"><font color="#3366bb">17203433</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Smallest+angiosperm+genomes+found+in+Lentibulariaceae%2C+with+chromosomes+of+bacterial+size&amp;rft.jtitle=Plant+Biology&amp;rft.aulast=Greilhuber%2C+J.%2C+Borsch%2C+T.%2C+M%C3%BCller%2C+K.%2C+Worberg%2C+A.%2C+Porembski%2C+S.%2C+and+Barthlott%2C+W.&amp;rft.au=Greilhuber%2C+J.%2C+Borsch%2C+T.%2C+M%C3%BCller%2C+K.%2C+Worberg%2C+A.%2C+Porembski%2C+S.%2C+and+Barthlott%2C+W.&amp;rft.date=2006&amp;rft.volume=8&amp;rft.issue=6&amp;rft.pages=770%E2%80%93777&amp;rft_id=info:doi/10.1055%2Fs-2006-924101&amp;rft_id=info:pmid/17203433&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-16"><strong><a href="#cite_ref-16"><font color="#0645ad">^</font></a></strong> Daniel Lang, Andreas D. Zimmer, Stefan A. Rensing, <a title="Ralf Reski" href="/wiki/Ralf_Reski"><font color="#0645ad">Ralf Reski</font></a>(2008): Exploring plant <a title="Biodiversity" href="/wiki/Biodiversity"><font color="#0645ad">biodiversity</font></a>: the Physcomitrella genome and beyond. Trends in Plant Science 13, 542-549. <a class="external autonumber" rel="nofollow" href="http://www.cell.com/trends/plant-science/abstract/S1360-1385(08)00204-5"><font color="#3366bb">[1]</font></a> </li>
 
    <li id="cite_note-17"><strong><a href="#cite_ref-17"><font color="#0645ad">^</font></a></strong> <a class="external free" rel="nofollow" href="http://www.yeastgenome.org/"><font color="#3366bb">http://www.yeastgenome.org/</font></a> </li>
 
    <li id="cite_note-18"><strong><a href="#cite_ref-18"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">The <em>C. elegans</em> Sequencing Consortium (1998). <a class="external text" rel="nofollow" href="http://www.sciencemag.org/cgi/content/abstract/282/5396/2012"><font color="#3366bb">&quot;Genome sequence of the nematode <em>C. elegans</em>: a platform for investigating biology&quot;</font></a>. <em><a title="Science (journal)" href="/wiki/Science_(journal)"><font color="#0645ad">Science</font></a></em> <strong>282</strong> (5396): 2012&ndash;2018. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1126%2Fscience.282.5396.2012"><font color="#3366bb">10.1126/science.282.5396.2012</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/9851916"><font color="#3366bb">9851916</font></a><span class="printonly">. <a class="external free" rel="nofollow" href="http://www.sciencemag.org/cgi/content/abstract/282/5396/2012"><font color="#3366bb">http://www.sciencemag.org/cgi/content/abstract/282/5396/2012</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Genome+sequence+of+the+nematode+%27%27C.+elegans%27%27%3A+a+platform+for+investigating+biology&amp;rft.jtitle=%5B%5BScience+%28journal%29%7CScience%5D%5D&amp;rft.aulast=The+%27%27C.+elegans%27%27+Sequencing+Consortium&amp;rft.au=The+%27%27C.+elegans%27%27+Sequencing+Consortium&amp;rft.date=1998&amp;rft.volume=282&amp;rft.issue=5396&amp;rft.pages=2012%E2%80%932018&amp;rft_id=info:doi/10.1126%2Fscience.282.5396.2012&amp;rft_id=info:pmid/9851916&amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F282%2F5396%2F2012&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-19"><strong><a href="#cite_ref-19"><font color="#0645ad">^</font></a></strong> <span class="citation web"><a class="external text" rel="nofollow" href="http://www.genomesize.com/statistics.php?stats=entire#stats_top"><font color="#3366bb">&quot;Gregory, T.R. (2005). Animal Genome Size Database. http://www.genomesize.com.&quot;</font></a><span class="printonly">. <a class="external free" rel="nofollow" href="http://www.genomesize.com/statistics.php?stats=entire#stats_top"><font color="#3366bb">http://www.genomesize.com/statistics.php?stats=entire#stats_top</font></a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.btitle=Gregory%2C+T.R.+%282005%29.+Animal+Genome+Size+Database.+http%3A%2F%2Fwww.genomesize.com.&amp;rft.atitle=&amp;rft_id=http%3A%2F%2Fwww.genomesize.com%2Fstatistics.php%3Fstats%3Dentire%23stats_top&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-Adams_2000-20"><strong><a href="#cite_ref-Adams_2000_20-0"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Adams MD, Celniker SE, Holt RA, <em>et al.</em> (2000). <a class="external text" rel="nofollow" href="http://www.sciencemag.org/cgi/content/abstract/287/5461/2185"><font color="#3366bb">&quot;The genome sequence of <em>Drosophila melanogaster</em>&quot;</font></a>. <em>Science</em> <strong>287</strong> (5461): 2185&ndash;95. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1126%2Fscience.287.5461.2185"><font color="#3366bb">10.1126/science.287.5461.2185</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/10731132"><font color="#3366bb">10731132</font></a><span class="printonly">. <a class="external free" rel="nofollow" href="http://www.sciencemag.org/cgi/content/abstract/287/5461/2185"><font color="#3366bb">http://www.sciencemag.org/cgi/content/abstract/287/5461/2185</font></a></span><span class="reference-accessdate">. Retrieved 2007-05-25</span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+genome+sequence+of+%27%27Drosophila+melanogaster%27%27&amp;rft.jtitle=Science&amp;rft.aulast=Adams+MD%2C+Celniker+SE%2C+Holt+RA%2C+%27%27et+al.%27%27&amp;rft.au=Adams+MD%2C+Celniker+SE%2C+Holt+RA%2C+%27%27et+al.%27%27&amp;rft.date=2000&amp;rft.volume=287&amp;rft.issue=5461&amp;rft.pages=2185%E2%80%9395&amp;rft_id=info:doi/10.1126%2Fscience.287.5461.2185&amp;rft_id=info:pmid/10731132&amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F287%2F5461%2F2185&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-21"><strong><a href="#cite_ref-21"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006). <a class="external text" rel="nofollow" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;artid=1324956"><font color="#3366bb">&quot;Essential genes of a minimal bacterium.&quot;</font></a>. <em>Proc Natl Acad Sci USA</em> <strong>103</strong> (2): 425&ndash;30. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1073%2Fpnas.0510013103"><font color="#3366bb">10.1073/pnas.0510013103</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/16407165"><font color="#3366bb">16407165</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Essential+genes+of+a+minimal+bacterium.&amp;rft.jtitle=Proc+Natl+Acad+Sci+USA&amp;rft.aulast=Glass+JI%2C+Assad-Garcia+N%2C+Alperovich+N%2C+Yooseph+S%2C+Lewis+MR%2C+Maruf+M%2C+Hutchison+CA+3rd%2C+Smith+HO%2C+Venter+JC&amp;rft.au=Glass+JI%2C+Assad-Garcia+N%2C+Alperovich+N%2C+Yooseph+S%2C+Lewis+MR%2C+Maruf+M%2C+Hutchison+CA+3rd%2C+Smith+HO%2C+Venter+JC&amp;rft.date=2006&amp;rft.volume=103&amp;rft.issue=2&amp;rft.pages=425%E2%80%9330&amp;rft_id=info:doi/10.1073%2Fpnas.0510013103&amp;rft_id=info:pmid/16407165&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
    <li id="cite_note-22"><strong><a href="#cite_ref-22"><font color="#0645ad">^</font></a></strong> <span class="citation Journal">Forster AC, Church GM (2006). <a class="external text" rel="nofollow" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;artid=1681520"><font color="#3366bb">&quot;Towards synthesis of a minimal cell&quot;</font></a>. <em>Mol Syst Biol.</em> <strong>2:45</strong>: 45. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1038%2Fmsb4100090"><font color="#3366bb">10.1038/msb4100090</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/16924266"><font color="#3366bb">16924266</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Towards+synthesis+of+a+minimal+cell&amp;rft.jtitle=Mol+Syst+Biol.&amp;rft.aulast=Forster+AC%2C+Church+GM&amp;rft.au=Forster+AC%2C+Church+GM&amp;rft.date=2006&amp;rft.volume=2%3A45&amp;rft.pages=45&amp;rft_id=info:doi/10.1038%2Fmsb4100090&amp;rft_id=info:pmid/16924266&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
 
</ol>
 
 
</div>
 
</div>
<h2><span id="Further_reading" class="mw-headline">Further reading</span></h2>
+
 
<ul>
+
<p>Genomics is the <a href="http://biopedia.org/index.php/Omics">omics</a> study of <a href="http://biopedia.org/index.php/Gene">genes</a> of individual organisms,&nbsp;populations, and <a href="http://biopedia.org/index.php/Species">species</a>.</p>
    <li><span class="citation book">Benfey, P.; Protopapas, A.D. (2004). <em>Essentials of Genomics</em>. Prentice Hall.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Essentials+of+Genomics&amp;rft.aulast=Benfey&amp;rft.aufirst=P.&amp;rft.au=Benfey%2C%26%2332%3BP.&amp;rft.date=2004&amp;rft.pub=Prentice+Hall&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
 
    <li><span class="citation book">Brown, Terence A. (2002). <em>Genomes 2</em>. Oxford: Bios Scientific Publishers. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/978-1859960295" href="/wiki/Special:BookSources/978-1859960295"><font color="#0645ad">978-1859960295</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Genomes+2&amp;rft.aulast=Brown&amp;rft.aufirst=Terence+A.&amp;rft.au=Brown%2C%26%2332%3BTerence+A.&amp;rft.date=2002&amp;rft.place=Oxford&amp;rft.pub=Bios+Scientific+Publishers&amp;rft.isbn=978-1859960295&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
<p>Paradigm of performing biological science that deviates from&nbsp;investigating single genes, their functions, and roles.</p>
    <li><span class="citation book">Gibson, Greg; Muse, Spencer V. (2004). <em>A Primer of Genome Science</em> (Second ed.). Sunderland, Mass: Sinauer Assoc. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-87893-234-8" href="/wiki/Special:BookSources/0-87893-234-8"><font color="#0645ad">0-87893-234-8</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Primer+of+Genome+Science&amp;rft.aulast=Gibson&amp;rft.aufirst=Greg&amp;rft.au=Gibson%2C%26%2332%3BGreg&amp;rft.date=2004&amp;rft.edition=Second&amp;rft.place=Sunderland%2C+Mass&amp;rft.pub=Sinauer+Assoc&amp;rft.isbn=0-87893-234-8&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
 
    <li><span class="citation book">Gregory, T. Ryan (ed) (2005). <em><a title="The Evolution of the Genome" href="/wiki/The_Evolution_of_the_Genome"><font color="#0645ad">The Evolution of the Genome</font></a></em>. Elsevier. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-12-301463-8" href="/wiki/Special:BookSources/0-12-301463-8"><font color="#0645ad">0-12-301463-8</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;rft.aulast=Gregory&amp;rft.aufirst=T.+Ryan+%28ed%29&amp;rft.au=Gregory%2C%26%2332%3BT.+Ryan+%28ed%29&amp;rft.date=2005&amp;rft.pub=Elsevier&amp;rft.isbn=0-12-301463-8&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
<p>&nbsp;</p>
    <li><span class="citation book">Reece, Richard J. (2004). <em>Analysis of Genes and Genomes</em>. Chichester: John Wiley &amp; Sons. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-470-84379-9" href="/wiki/Special:BookSources/0-470-84379-9"><font color="#0645ad">0-470-84379-9</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analysis+of+Genes+and+Genomes&amp;rft.aulast=Reece&amp;rft.aufirst=Richard+J.&amp;rft.au=Reece%2C%26%2332%3BRichard+J.&amp;rft.date=2004&amp;rft.place=Chichester&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.isbn=0-470-84379-9&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
 
    <li><span class="citation book">Saccone, Cecilia; Pesole, Graziano (2003). <em>Handbook of Comparative Genomics</em>. Chichester: John Wiley &amp; Sons. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-471-39128-X" href="/wiki/Special:BookSources/0-471-39128-X"><font color="#0645ad">0-471-39128-X</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Comparative+Genomics&amp;rft.aulast=Saccone&amp;rft.aufirst=Cecilia&amp;rft.au=Saccone%2C%26%2332%3BCecilia&amp;rft.date=2003&amp;rft.place=Chichester&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.isbn=0-471-39128-X&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
<p><strong>What is Omics?</strong></p>
    <li><span class="citation Journal">Werner, E. (2003). &quot;In silico multicellular systems biology and minimal genomes&quot;. <em>Drug Discov Today</em> <strong>8</strong> (24): 1121&ndash;1127. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1016%2FS1359-6446%2803%2902918-0"><font color="#3366bb">10.1016/S1359-6446(03)02918-0</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/14678738"><font color="#3366bb">14678738</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=In+silico+multicellular+systems+biology+and+minimal+genomes&amp;rft.jtitle=Drug+Discov+Today&amp;rft.aulast=Werner&amp;rft.aufirst=E.&amp;rft.au=Werner%2C%26%2332%3BE.&amp;rft.date=2003&amp;rft.volume=8&amp;rft.issue=24&amp;rft.pages=1121%E2%80%931127&amp;rft_id=info:doi/10.1016%2FS1359-6446%2803%2902918-0&amp;rft_id=info:pmid/14678738&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
 
</ul>
+
<p>General term for a broad discipline of science and engineering</p>
<h2><span id="External_links" class="mw-headline">External links</span></h2>
+
 
<ul>
+
<p>Analyzing the interactions of biological information objects in various&nbsp;<a href="http://omics.org/index.php?title=Omes&amp;action=edit">omes</a> in biology</p>
    <li><font color="#3366bb">[http://genomics.org Genomics.org]</font> </li>
+
 
    <li>[http://omics.org Omics.org] </li>
+
<p><strong>Main focus</strong></p>
    <li><a class="external text" rel="nofollow" href="http://learn.genetics.utah.edu/content/begin/dna/builddna/"><font color="#3366bb">Build a DNA Molecule</font></a> </li>
+
 
    <li><a class="external text" rel="nofollow" href="http://www.genomenewsnetwork.org/articles/02_01/Sizing_genomes.shtml"><font color="#3366bb">Some comparative genome sizes</font></a> </li>
+
<div>1)mapping information objects such as genes and proteins</div>
    <li><a class="external text" rel="nofollow" href="http://www.dnai.org/"><font color="#3366bb">DNA Interactive: The History of DNA Science</font></a> </li>
+
 
    <li><a class="external text" rel="nofollow" href="http://www.dnaftb.org/"><font color="#3366bb">DNA From The Beginning</font></a> </li>
+
<div><strong><u>2)finding interaction relationships among the objects</u></strong></div>
    <li><a class="external text" rel="nofollow" href="http://www.genome.gov/10001772"><font color="#3366bb">All About The Human Genome Project from Genome.gov</font></a> </li>
+
 
    <li><a class="external text" rel="nofollow" href="http://www.genomesize.com/"><font color="#3366bb">Animal genome size database</font></a> </li>
+
<div>3)engineering the networks and objects to understand and manipulate the regulatory mechanisms</div>
    <li><a class="external text" rel="nofollow" href="http://www.rbgkew.org.uk/cval/homepage.html"><font color="#3366bb">Plant genome size database</font></a> </li>
+
 
    <li><a class="external text" rel="nofollow" href="http://www.genomesonline.org/"><font color="#3366bb">GOLD:Genomes OnLine Database</font></a> </li>
+
<div>&nbsp;</div>
    <li><a class="external text" rel="nofollow" href="http://www.genomenewsnetwork.org/"><font color="#3366bb">The Genome News Network</font></a> </li>
+
 
    <li><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj"><font color="#3366bb">NCBI Entrez Genome Project database</font></a> </li>
+
<div>&nbsp;</div>
    <li><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/About/primer/genetics_genome.html"><font color="#3366bb">NCBI Genome Primer</font></a> </li>
+
 
    <li><a class="external text" rel="nofollow" href="http://news.bbc.co.uk/1/hi/sci/tech/4994088.stm"><font color="#3366bb">BBC News - Final genome 'chapter' published</font></a> </li>
+
<div><strong>What is Proteomics?</strong></div>
    <li><a class="external text" rel="nofollow" href="https://www.crops.org/genome/"><font color="#3366bb">The Plant Genome</font></a> </li>
+
 
    <li><a class="external text" rel="nofollow" href="http://img.jgi.doe.gov/"><font color="#3366bb">IMG</font></a> The Integrated Microbial Genomes system, for genome analysis by the DOE-JGI. </li>
+
<div>&nbsp;</div>
    <li><a class="external text" rel="nofollow" href="http://camera.calit2.net/index.php/"><font color="#3366bb">CAMERA</font></a> Cyberinfrastructure for Metagenomics, data repository and bioinformatics tools for metagenomic research </li>
+
 
    <li><a class="external text" rel="nofollow" href="http://www.genecards.org/"><font color="#3366bb">GeneCards</font></a> an integrated database of human genes. </li>
+
<div>
    <li><a class="external text" rel="nofollow" href="http://genome.igib.res.in/"><font color="#3366bb">Genome@IGIB</font></a> Resources and News on the Zebrafish Genome Project @ IGIB. </li>
+
<p>Omics study of&nbsp;proteins, particularly their structures, sequences,&nbsp;and functions.</p>
    <li><a class="external text" rel="nofollow" href="http://www.geknome.com"><font color="#3366bb">GeKnome Technologies Next-Gen Sequencing Data Analysis</font></a> Next-Gen Sequencing Data Analysis for <a title="Illumina" href="/wiki/Illumina"><font color="#0645ad">Illumina</font></a> and <a title="454" href="/wiki/454"><font color="#0645ad">454</font></a> Service from GeKnome Technologies. </li>
+
 
    <li><a class="external text" rel="nofollow" href="http://ascb.org/ibioseminars/brenner/brenner1.cfm"><font color="#3366bb">What Genomes Can Tell Us About the Past</font></a> - lecture by <a title="Sydney Brenner" href="/wiki/Sydney_Brenner"><font color="#0645ad">Sydney Brenner</font></a> </li>
+
<p>&nbsp;&nbsp; (which proteins interact)</p>
    <li><a class="external text" rel="nofollow" href="http://www.imame.org/form/genome--mid80-frz.htm"><font color="#3366bb">Genome metaphor, reflecting from formal-net hierarchies, and software binaries</font></a>. </li>
+
 
</ul>
+
<p>&nbsp;</p>
 +
 
 +
<p>The set of proteins produced by it during its life, and its genome is its set of genes.</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>A proteome differs from cell to cell and constantly changes through its biochemical interactions with the genome and the environment.</p>
 +
 
 +
<p>=&gt; One organism has radically different protein expression in different parts of its body, different stages of its life cycle and different environmental conditions</p>
 +
 
 +
<p>*There are far fewer protein-coding genes in the human genome than proteins in the human proteome (20,000 to 25,000 genes vs. &gt; 500,000 proteins)</p>
 +
 
 +
<p>=&gt; Protein diversity is thought to be due to alternative splicing and post-translational modification of proteins</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>New methods include protein microarrays, <u><strong>immunoaffinity chromatography followed by mass spectrometry(MALDI-TOF mass spectrometry),</strong> </u>and combinations of experimental methods such as phage display and computational methods.</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><strong>What is Metabolome?</strong></p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>Interaction between an organism&rsquo;s genome and its environment</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>Complete set of <a href="https://en.wikipedia.org/wiki/Small_molecule">small-molecule</a> chemicals found within a biological sample.</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>The <a href="https://en.wikipedia.org/wiki/Small_molecule">small molecule</a> chemicals found in a given metabolome may include both endogenous <a href="https://en.wikipedia.org/wiki/Metabolites">metabolites</a> that are naturally produced by an <a href="https://en.wikipedia.org/wiki/Organism">organism</a> as well as exogenous chemicals</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><strong>The endogenous metabolome</strong></p>
 +
 
 +
<p>-&gt; primary metabolome</p>
 +
 
 +
<p>-&gt; Secondary metabolome</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><a href="https://en.wikipedia.org/wiki/Primary_metabolite">* primary metabolite</a> is directly involved in the normal growth, development, and reproduction.</p>
 +
 
 +
<p><a href="https://en.wikipedia.org/wiki/Secondary_metabolite">*secondary metabolite</a> is not directly involved in those processes, but usually has important ecological function(ex: <a href="https://en.wikipedia.org/wiki/Pigments">pigments</a>, <a href="https://en.wikipedia.org/wiki/Antibiotics">antibiotics</a> or waste products derived from partially metabolized <a href="https://en.wikipedia.org/wiki/Xenobiotics">xenobiotics</a>)</p>
 +
 
 +
<p><a href="https://en.wikipedia.org/wiki/NMR_spectroscopy">Use NMR spectroscopy</a> and <a href="https://en.wikipedia.org/wiki/Mass_spectrometry">mass spectrometry</a>.</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><strong>The Human Metabolome Database</strong></p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>Contain detailed data on more than 40,000 metabolites that have already been identified or are likely to be found in the human body</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<div>1)Chemical information</div>
 +
 
 +
<p>- includes &gt;40,000 metabolite structures with detailed descriptions, extensive chemical classifications, synthesis information and observed/calculated chemical properties</p>
 +
 
 +
<div>&nbsp;</div>
 +
 
 +
<div>2)Clinical information</div>
 +
 
 +
<p>- includes data on &gt;10,000 <a href="https://en.wikipedia.org/wiki/Metabolite">metabolite</a>-<a href="https://en.wikipedia.org/wiki/Biofluid">biofluid</a> concentrations, metabolite concentration information on more than 600 different human diseases and pathway data for more than 200 different inborn errors of metabolism.</p>
 +
 
 +
<div>&nbsp;</div>
 +
 
 +
<div>&nbsp;</div>
 +
 
 +
<div>3)Biochemical information.</div>
 +
 
 +
<p>- includes nearly 6000 protein (and DNA) sequences and more than 5000 biochemical reactions that are linked to these metabolite entries</p>
 +
</div>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>---------------------------------------------</p>
 +
 
 +
<p>Obese</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>-&gt; Mainly Influenced by External effects!</p>
 +
 
 +
<p>-&gt; The Disease that can be cured!</p>
 +
 
 +
<p>-&gt; Obese parents usually have obese children!</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><strong><u>Therefore, Focus more on protemoics, Metabolome!</u></strong></p>
 +
 
 +
<p>&nbsp;-----------------------------------------------------------------------</p>
 +
 
 +
<p><strong><span style="font-size:14px">Adipose tissue</span></strong></p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><strong>-&gt; Adipokine </strong></p>
 +
 
 +
<p>&nbsp;&nbsp; -&gt; <span style="font-size:12px"><span style="color:black; font-family:맑은 고딕">Adipose tissue secreted multiple mediator</span></span></p>
 +
 
 +
<p><span style="font-size:12px"><span style="color:black; font-family:맑은 고딕">&nbsp;&nbsp;&nbsp;</span></span>-&gt; Passed through either endocrine or paracrine</p>
 +
 
 +
<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Ex: Hormone: leptin, adiponectin</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><strong>-&gt; Adiponectin</strong></p>
 +
 
 +
<p><strong>&nbsp;&nbsp;&nbsp; -&gt; </strong>Adipocyte-secreted adipokine</p>
 +
 
 +
<p>&nbsp;&nbsp;&nbsp; -&gt; Increase lipid oxidation&amp; anti-inflammatory, insulin-sensitizing,&nbsp; angiogenic action</p>
 +
 
 +
<p>&nbsp;&nbsp;&nbsp; <strong>=&gt; Anti obesity &amp; Antidiabetic, Decrease insulin resistance&nbsp;</strong></p>
 +
 
 +
<p>&nbsp;[[File:1.png|400px]]</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>&nbsp;[[File:2.gif|400px]]</p>
 +
 
 +
<p>-&gt; Illustration of the major physiological and metabolic</p>
 +
 
 +
<p>processes with which adipose tissue is involved through the secretion</p>
 +
 
 +
<p>of various adipokines from adipocytes. The interactions may be</p>
 +
 
 +
<p>autocrine, paracrine, or endocrine.</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><span style="font-size:16px"><strong>&lt;Searching Scientific Reports&gt;</strong></span></p>
 +
 
 +
<p>&nbsp;[[File:3.png|400px]]</p>
 +
 
 +
<p>&nbsp;[[File:4.png|400px]]</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><strong><span style="font-size:16px">&lt;What is Col6?&gt;</span></strong></p>
 +
 
 +
<p>- COL6 = Collagen type 6</p>
 +
 
 +
<p>- Abundant constituent of white adipose tissue (WAT)</p>
 +
 
 +
<p>- COL6 levels positively correlate with hyperglycaemia and insulin resistance</p>
 +
 
 +
<p>- Composed of three distinct a chains, a1, a2 and a3.(COL6 trimeric building block) and are subsequently secreted into the ECM</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><strong><span style="font-size:16px">&lt;What is a3 Chain?&gt;</span></strong></p>
 +
 
 +
<p>-&gt; longest of the three chains</p>
 +
 
 +
<p>- contains an unusually long N terminus and a globular C5 domain at the C-terminus</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>-&gt; C-terminal portion of the a3 subunit is cleaved off during the post-translational processing of COL6 fibrils(COL6a3, Endotrophin)</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><strong><span style="font-size:16px">&lt;What is Endotrophin?&gt;</span></strong></p>
 +
 
 +
<p>- Adipokine with potent tumour-promoting effects</p>
 +
 
 +
<p>- Plays a pivotal role in shaping a metabolically unfavorable microenvironment in adipose tissue during consumption of a high-fat diet (HFD)</p>
 +
 
 +
<p>- Powerful co-stimulator of pathologically relevant pathways within the &lsquo;unhealthy&rsquo; adipose tissue milieu, triggering fibrosis and inflammation and ultimately leading to enhanced insulin resistance&amp; metabolic dysfunction.</p>
 +
 
 +
<p>- Exerts a major influence in adipose tissue</p>
 +
 
 +
<p>- Endotrophin within the tumor microenvironment serves as a major mediator of COL6-stimulated mammary tumor growth and subsequent chemo resistance</p>
 +
 
 +
<p>- Stimulates fibrosis, activates endothelial cell migration and promotes macrophage infiltration into growing solid tumors.</p>
 +
 
 +
<p>=&gt; elevated mammary tumor expansion and more pronounced metastatic growth</p>
 +
 
 +
<p>&nbsp;[[File:5.png|400px]]</p>
 +
 
 +
<p>---------------------------------------------------------</p>
 +
 
 +
<p><u><strong><span style="font-size:18px">Problem!</span></strong></u></p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><strong>-&gt; Don&rsquo;t know the mechanism of how ETP works.</strong></p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><u><strong><span style="font-size:16px">What I&rsquo;m going to do!</span></strong></u></p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<div><strong>-&gt; Find the Receptor according to the New method of Protemoics.</strong></div>
 +
 
 +
<div><strong>-&gt; Find the interaction, relationship and mechanisms how they act.(Study of Omics)</strong></div>
 +
 
 +
<div><u><strong>&nbsp;-&gt; Omics could be applied to genomics perspective!</strong></u></div>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>mETP(204bp, 16.43kda)</p>
 +
 
 +
<p>ACAGAACCATTGTTTCTCACTAAAACAGATATATGTAAGCTGTCCAGAGATGCTGGGACTT</p>
 +
 
 +
<p>GTGTGGACTTCAAGTTACTATGGCACTATGACCTAGAGAGCAAAAGTTGCAAGAGATTCTG</p>
 +
 
 +
<p>GTATGGAGGTTGTGGAGGCAACGAGAACAGATTCCACTCCCAGGAAGAATGTGAAAAGATGTGTAGTCCTGAGTTAACAGTT</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>SpyTag(39bp, 16.43kda)</p>
 +
 
 +
<p>GCCCACATCGTGATGGTGGACGCCTACAAGCCGACGAAG</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>pRL(90bp, 7.48kda)</p>
 +
 
 +
<p>ATGGACAGCAAAGGTTCGTCGCAGAAAGGGTCCCGCCTGCTCCTGCTGCTGGTGGTGTCAAATCTACTCTTGTGCCAGGGTGTGGTCTCC</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>(1)</p>
 +
 
 +
<p>&nbsp;[[File:12.png|600px]]</p>
 +
 
 +
<p>&nbsp;pRA-GFP-EcoR1-pRL-unknown-mETP-SpyTag-Stop</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>-&gt;<strong> How to make this cloning?</strong></p>
 +
 
 +
<p>(1)By Using pRL-EcoR1 forward primer, mETP-SpyTag-Stop-Xho1 primer, make pRL-EcoR1-mETP-SpyTag-Stop-Xho1 by Ex-Tag PCR</p>
 +
 
 +
<p>[[File:13.png|500px]]</p>
 +
 
 +
<p>(2) Insert template gained from (1) in T-Vector to check whether it is really pRL-EcoR1-mETP-SpyTag-Stop-Xho1&nbsp;or not.</p>
 +
 
 +
<p>(3) Use EcoR1, Xho1 Digestion enzyme to double digest T vector</p>
 +
 
 +
<p>(4) Double Digest pRA GFP vector(empty vector) and purify it.</p>
 +
 
 +
<p>(5) ligate (3), (4) product</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p><strong>-&gt; Detailed on Each Steps</strong></p>
 +
 
 +
<p>(1) Ex-Tag PCR process</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>-&gt;Template(pRA-GFP, 20ng): 1ul</p>
 +
 
 +
<p>-&gt;Primer: 1,1ul</p>
 +
 
 +
<p>-&gt;dNTP(10nM): 1ul</p>
 +
 
 +
<p>-&gt;10X Ex-Tag Buffer: 2.5ul</p>
 +
 
 +
<p>-&gt; Ex-Tag polymerase: 1ul</p>
 +
 
 +
<p>-&gt; D.W: 17.5ul</p>
 +
 
 +
<p>----------------------------------------</p>
 +
 
 +
<p>Total: 25ul</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>PCR</p>
 +
 
 +
<p>-&gt;Temperature Gradient : 54,56,58</p>
 +
 
 +
<p>-&gt;98 celsius : 2min</p>
 +
 
 +
<p>-&gt;98 celsius : 10sec</p>
 +
 
 +
<p>-&gt;57 celsius : 30sec</p>
 +
 
 +
<p>-&gt;72 celsius&nbsp;: 30sec(insert 300bp)</p>
 +
 
 +
<p>-&gt;72 celsius : 5min</p>
 +
 
 +
<p>X35</p>
 +
 
 +
<p>&nbsp;[[File:14.png|400px]]</p>
 +
 
 +
<p>-&gt; Can see the insert(300bp) in both 54,56,58 temperature gradient!</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>&nbsp;(2)</p>
 +
 
 +
<p>&lt;T vector ligation&gt;</p>
 +
 
 +
<p>Insert DNA mass: 8.607ng(3:1)</p>
 +
 
 +
<p>2X Rapid ligation: 5ul</p>
 +
 
 +
<p>T vector: 0.5ul(25ng)</p>
 +
 
 +
<p>PCR product: 1ul(8.7ng)</p>
 +
 
 +
<p>D.W: 2.5ul</p>
 +
 
 +
<p>T4 DNA Ligase: 1ul</p>
 +
 
 +
<p>----------------------------</p>
 +
 
 +
<p>Total: 10ul</p>
 +
 
 +
<p>RT 1 hour incubation</p>
 +
 
 +
<p>Then, Transformation</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>&lt;Colony PCR&gt;</p>
 +
 
 +
<p>-&gt; Check whether insert base pairs is inserted in T vector well</p>
 +
 
 +
<p>T.D.W : 14.9</p>
 +
 
 +
<p>10X Buffer : 2</p>
 +
 
 +
<p>M13 primer Forward: 0.5</p>
 +
 
 +
<p>M13 primer Reverse: 0.5</p>
 +
 
 +
<p>2.5mM dNTP: 1.6</p>
 +
 
 +
<p>XL-Taq polymerase: 0.5</p>
 +
 
 +
<p>&nbsp;---------------------------------</p>
 +
 
 +
<p>[[File:15.jpg|400px]]</p>
 +
 
 +
<p>Can check on 3,5 well(T vector 200bp+ 346bp = 500~600bp)</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>&nbsp;(3)</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>&nbsp;</p>
 +
 
 +
<p>------------------------------------------------------------</p>
 +
 
 +
<p>[[20131571 조우빈]]</p>

Revision as of 16:23, 4 November 2016

 

Obese in Genomics

 

What is Obese?

-Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have a negative effect on health.
 
-People are generally considered obese when their body mass index (BMI), a measurement obtained by dividing a person's weight by the square of the person's height, is over 30 kg/m2 , with the range 25–30 kg/m2 defined as overweight
 
-Obesity increases the likelihood of various diseases, particularly heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis.
 
-Obesity is most commonly caused by a combination of excessive food intake, lack of physical activity, and genetic susceptibility.
 

 

Arrangement of basic terms in Genomics

 

What is Genomics?

Genomics is the omics study of genes of individual organisms, populations, and species.

Paradigm of performing biological science that deviates from investigating single genes, their functions, and roles.

 

What is Omics?

General term for a broad discipline of science and engineering

Analyzing the interactions of biological information objects in various omes in biology

Main focus

1)mapping information objects such as genes and proteins
2)finding interaction relationships among the objects
3)engineering the networks and objects to understand and manipulate the regulatory mechanisms
 
 
What is Proteomics?
 

Omics study of proteins, particularly their structures, sequences, and functions.

   (which proteins interact)

 

The set of proteins produced by it during its life, and its genome is its set of genes.

 

A proteome differs from cell to cell and constantly changes through its biochemical interactions with the genome and the environment.

=> One organism has radically different protein expression in different parts of its body, different stages of its life cycle and different environmental conditions

*There are far fewer protein-coding genes in the human genome than proteins in the human proteome (20,000 to 25,000 genes vs. > 500,000 proteins)

=> Protein diversity is thought to be due to alternative splicing and post-translational modification of proteins

 

New methods include protein microarrays, immunoaffinity chromatography followed by mass spectrometry(MALDI-TOF mass spectrometry), and combinations of experimental methods such as phage display and computational methods.

 

What is Metabolome?

 

Interaction between an organism’s genome and its environment

 

Complete set of small-molecule chemicals found within a biological sample.

 

The small molecule chemicals found in a given metabolome may include both endogenous metabolites that are naturally produced by an organism as well as exogenous chemicals

 

The endogenous metabolome

-> primary metabolome

-> Secondary metabolome

 

* primary metabolite is directly involved in the normal growth, development, and reproduction.

*secondary metabolite is not directly involved in those processes, but usually has important ecological function(ex: pigments, antibiotics or waste products derived from partially metabolized xenobiotics)

Use NMR spectroscopy and mass spectrometry.

 

 

The Human Metabolome Database

 

Contain detailed data on more than 40,000 metabolites that have already been identified or are likely to be found in the human body

 

1)Chemical information

- includes >40,000 metabolite structures with detailed descriptions, extensive chemical classifications, synthesis information and observed/calculated chemical properties

 
2)Clinical information

- includes data on >10,000 metabolite-biofluid concentrations, metabolite concentration information on more than 600 different human diseases and pathway data for more than 200 different inborn errors of metabolism.

 
 
3)Biochemical information.

- includes nearly 6000 protein (and DNA) sequences and more than 5000 biochemical reactions that are linked to these metabolite entries

 

---------------------------------------------

Obese

 

-> Mainly Influenced by External effects!

-> The Disease that can be cured!

-> Obese parents usually have obese children!

 

Therefore, Focus more on protemoics, Metabolome!

 -----------------------------------------------------------------------

Adipose tissue

 

-> Adipokine

   -> Adipose tissue secreted multiple mediator

   -> Passed through either endocrine or paracrine

       Ex: Hormone: leptin, adiponectin

 

-> Adiponectin

    -> Adipocyte-secreted adipokine

    -> Increase lipid oxidation& anti-inflammatory, insulin-sensitizing,  angiogenic action

    => Anti obesity & Antidiabetic, Decrease insulin resistance 

 400px

 

 

 400px

-> Illustration of the major physiological and metabolic

processes with which adipose tissue is involved through the secretion

of various adipokines from adipocytes. The interactions may be

autocrine, paracrine, or endocrine.

 

<Searching Scientific Reports>

 400px

 400px

 

<What is Col6?>

- COL6 = Collagen type 6

- Abundant constituent of white adipose tissue (WAT)

- COL6 levels positively correlate with hyperglycaemia and insulin resistance

- Composed of three distinct a chains, a1, a2 and a3.(COL6 trimeric building block) and are subsequently secreted into the ECM

 

<What is a3 Chain?>

-> longest of the three chains

- contains an unusually long N terminus and a globular C5 domain at the C-terminus

 

-> C-terminal portion of the a3 subunit is cleaved off during the post-translational processing of COL6 fibrils(COL6a3, Endotrophin)

 

<What is Endotrophin?>

- Adipokine with potent tumour-promoting effects

- Plays a pivotal role in shaping a metabolically unfavorable microenvironment in adipose tissue during consumption of a high-fat diet (HFD)

- Powerful co-stimulator of pathologically relevant pathways within the ‘unhealthy’ adipose tissue milieu, triggering fibrosis and inflammation and ultimately leading to enhanced insulin resistance& metabolic dysfunction.

- Exerts a major influence in adipose tissue

- Endotrophin within the tumor microenvironment serves as a major mediator of COL6-stimulated mammary tumor growth and subsequent chemo resistance

- Stimulates fibrosis, activates endothelial cell migration and promotes macrophage infiltration into growing solid tumors.

=> elevated mammary tumor expansion and more pronounced metastatic growth

 400px

---------------------------------------------------------

Problem!

 

-> Don’t know the mechanism of how ETP works.

 

What I’m going to do!

 

-> Find the Receptor according to the New method of Protemoics.
-> Find the interaction, relationship and mechanisms how they act.(Study of Omics)
 -> Omics could be applied to genomics perspective!

 

 

mETP(204bp, 16.43kda)

ACAGAACCATTGTTTCTCACTAAAACAGATATATGTAAGCTGTCCAGAGATGCTGGGACTT

GTGTGGACTTCAAGTTACTATGGCACTATGACCTAGAGAGCAAAAGTTGCAAGAGATTCTG

GTATGGAGGTTGTGGAGGCAACGAGAACAGATTCCACTCCCAGGAAGAATGTGAAAAGATGTGTAGTCCTGAGTTAACAGTT

 

SpyTag(39bp, 16.43kda)

GCCCACATCGTGATGGTGGACGCCTACAAGCCGACGAAG

 

pRL(90bp, 7.48kda)

ATGGACAGCAAAGGTTCGTCGCAGAAAGGGTCCCGCCTGCTCCTGCTGCTGGTGGTGTCAAATCTACTCTTGTGCCAGGGTGTGGTCTCC

 

(1)

 600px

 pRA-GFP-EcoR1-pRL-unknown-mETP-SpyTag-Stop

 

-> How to make this cloning?

(1)By Using pRL-EcoR1 forward primer, mETP-SpyTag-Stop-Xho1 primer, make pRL-EcoR1-mETP-SpyTag-Stop-Xho1 by Ex-Tag PCR

500px

(2) Insert template gained from (1) in T-Vector to check whether it is really pRL-EcoR1-mETP-SpyTag-Stop-Xho1 or not.

(3) Use EcoR1, Xho1 Digestion enzyme to double digest T vector

(4) Double Digest pRA GFP vector(empty vector) and purify it.

(5) ligate (3), (4) product

 

-> Detailed on Each Steps

(1) Ex-Tag PCR process

 

->Template(pRA-GFP, 20ng): 1ul

->Primer: 1,1ul

->dNTP(10nM): 1ul

->10X Ex-Tag Buffer: 2.5ul

-> Ex-Tag polymerase: 1ul

-> D.W: 17.5ul

----------------------------------------

Total: 25ul

 

PCR

->Temperature Gradient : 54,56,58

->98 celsius : 2min

->98 celsius : 10sec

->57 celsius : 30sec

->72 celsius : 30sec(insert 300bp)

->72 celsius : 5min

X35

 400px

-> Can see the insert(300bp) in both 54,56,58 temperature gradient!

 

 (2)

<T vector ligation>

Insert DNA mass: 8.607ng(3:1)

2X Rapid ligation: 5ul

T vector: 0.5ul(25ng)

PCR product: 1ul(8.7ng)

D.W: 2.5ul

T4 DNA Ligase: 1ul

----------------------------

Total: 10ul

RT 1 hour incubation

Then, Transformation

 

<Colony PCR>

-> Check whether insert base pairs is inserted in T vector well

T.D.W : 14.9

10X Buffer : 2

M13 primer Forward: 0.5

M13 primer Reverse: 0.5

2.5mM dNTP: 1.6

XL-Taq polymerase: 0.5

 ---------------------------------

15.jpg

Can check on 3,5 well(T vector 200bp+ 346bp = 500~600bp)

 

 (3)

 

 

------------------------------------------------------------

20131571 조우빈